openEuler上部署Tensorflow

openEuler上部署Tensorflow

今天给大家带来如何在openEuler上部署Tensorflow

这次部署Tensorflow框架,我们通过安装anaconda后在进行Tensorflow部署

部署TensorFlow分为以下几个步骤进行:

  1. 安装python环境
    由于openeuler已经自带了python3的环境,所以输入如下命令查看python3的版本:
    python3 --version
    在这里插入图片描述

  2. 下载并安装anaconda,进入官网下载linux版本的anaconda的安装软件(最新版本的anaconda是适配python3.8的,所以得找适配python3.7版本的anaconda安装包)步骤如下:
    anaconda官网地址
    选择Product下的Individual Edition
    滑到底部找到
    在这里插入图片描述
    点击here进入anaconda的历史版本
    找到linux版本下的
    在这里插入图片描述
    点击下载第二个
    Miniconda3 Linux-aarch64 64-bit
    等待下载完成。
    通过WinSCp将anaconda安装文件上传到openeuler上(这里我再openeuler根目录下创建了一个anaconda的目录用于存放anaconda安装文件)
    在这里插入图片描述
    等待上传完成

  3. 安装anaconda;
    进入anaconda安装文件所在目录输入如下命令:
    bash Miniconda3-py37_4.10.1-Linux-aarch64.sh
    然后一直回车和输入yes即可
    在这里插入图片描述
    有这个提示那么anaconda就安装完成了;

  4. ;配置anaconda环境
    安装anaconda完成后回到根目录
    cd
    通过ls查看根目录发现多出了一个miniconda3目录
    在这里插入图片描述
    cd进入miniconda3目录
    在这里插入图片描述
    设置anaconda环境就是将该目录下的bin目录路径写到profile文件,
    vim /etc/profile
    在这里插入图片描述
    export PATH=$PATH:/home/miniconda3/bin
    在这里插入图片描述
    输入python3
    在这里插入图片描述
    看到有Anaconda就意味Anaconda安装完成
    如果配置环境后没有Anaconda,建议重启一下电脑。

  5. 部署TensorFlow;
    Anaconda安装完成后部署TensorFlow就相对简单了,因为Anaconda相当于一个虚拟机,所以我们可以可以借助anaconda的库安装TensorFlow,
    conda install tensorflow
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    到此tensorflow部署完成
    9.测试tensorflow;
    在这里插入图片描述

  6. 接下来运行如下代码试试效果。
    创建一个test.py文件,将下面的代码复制到py文件中,保存退出
    运行test.py文件,python3 test.py
    在这里插入图片描述

在这里插入代码片
# -*- coding: utf-8 -*-

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.datasets import boston_housing

def createModel():
    model = Sequential()
    model.add(Dense(32, input_shape=(13,),activation='relu'))
    model.add(Dense(16,activation='relu'))
    model.add(Dense(1))
    model.compile(loss='mean_squared_error',optimizer='adam')
    return model

(x_train,y_train),(x_test,y_test) = boston_housing.load_data()
#读入boston_housing的数据集数据
model = createModel()

model.fit(x_train,y_train,batch_size=8,epochs=10)

print(model.metrics_names)
print(model.evaluate(x_test,y_test))

for i in range(10):
    x_te=x_test[i].reshape(1,13)
    y_pred = model.predict([[x_te]])
    print("predict:{}, target:{}".format(y_pred[0][0],y_test[i]))

Windows下Spyder运行结果
在这里插入图片描述
openEuler下的运行结果
在这里插入图片描述
两者运行结果是一样的
到此,安装测试完成。

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值