openEuler上部署Tensorflow
今天给大家带来如何在openEuler上部署Tensorflow
这次部署Tensorflow框架,我们通过安装anaconda后在进行Tensorflow部署
部署TensorFlow分为以下几个步骤进行:
-
安装python环境 ,
由于openeuler已经自带了python3的环境,所以输入如下命令查看python3的版本:
python3 --version
-
下载并安装anaconda,进入官网下载linux版本的anaconda的安装软件(最新版本的anaconda是适配python3.8的,所以得找适配python3.7版本的anaconda安装包)步骤如下:
anaconda官网地址
选择Product下的Individual Edition
滑到底部找到
点击here进入anaconda的历史版本
找到linux版本下的
点击下载第二个
Miniconda3 Linux-aarch64 64-bit
等待下载完成。
通过WinSCp将anaconda安装文件上传到openeuler上(这里我再openeuler根目录下创建了一个anaconda的目录用于存放anaconda安装文件)
等待上传完成 -
安装anaconda;
进入anaconda安装文件所在目录输入如下命令:
bash Miniconda3-py37_4.10.1-Linux-aarch64.sh
然后一直回车和输入yes即可
有这个提示那么anaconda就安装完成了; -
;配置anaconda环境
安装anaconda完成后回到根目录
cd
通过ls查看根目录发现多出了一个miniconda3目录
cd进入miniconda3目录
设置anaconda环境就是将该目录下的bin目录路径写到profile文件,
vim /etc/profile
export PATH=$PATH:/home/miniconda3/bin
输入python3
看到有Anaconda就意味Anaconda安装完成
如果配置环境后没有Anaconda,建议重启一下电脑。 -
部署TensorFlow;
Anaconda安装完成后部署TensorFlow就相对简单了,因为Anaconda相当于一个虚拟机,所以我们可以可以借助anaconda的库安装TensorFlow,
conda install tensorflow
到此tensorflow部署完成
9.测试tensorflow;
-
接下来运行如下代码试试效果。
创建一个test.py文件,将下面的代码复制到py文件中,保存退出
运行test.py文件,python3 test.py
在这里插入代码片
# -*- coding: utf-8 -*-
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.datasets import boston_housing
def createModel():
model = Sequential()
model.add(Dense(32, input_shape=(13,),activation='relu'))
model.add(Dense(16,activation='relu'))
model.add(Dense(1))
model.compile(loss='mean_squared_error',optimizer='adam')
return model
(x_train,y_train),(x_test,y_test) = boston_housing.load_data()
#读入boston_housing的数据集数据
model = createModel()
model.fit(x_train,y_train,batch_size=8,epochs=10)
print(model.metrics_names)
print(model.evaluate(x_test,y_test))
for i in range(10):
x_te=x_test[i].reshape(1,13)
y_pred = model.predict([[x_te]])
print("predict:{}, target:{}".format(y_pred[0][0],y_test[i]))
Windows下Spyder运行结果
openEuler下的运行结果
两者运行结果是一样的
到此,安装测试完成。