9.17小记

本文介绍了使用Python和OpenCV进行图像处理的多种技巧,包括调整图像灰度、应用高斯模糊、固定阈值二值化、计算图像信噪比等。通过具体代码示例,展示了如何操作图像数据,实现噪声去除、图像简化及质量评估。
摘要由CSDN通过智能技术生成

1、img50 = np.array(grey) img50[img50<50]=0
使img50的灰度值(?)小于50的为0.

2、高斯模糊
cv2.GaussianBlur(img,(5,5),0)

这里(5, 5)表示高斯矩阵的长与宽都是5,标准差取0时OpenCV会根据高斯矩阵的尺寸自己计算。概括地讲,高斯矩阵的尺寸越大,标准差越大,处理过的图像模糊程度越大。

3、cv2.threshold(src, thresh, maxval, type, dst=None):固定阈值二值化

设置固定级别的阈值应用于多通道矩阵
例如,将灰度图像变换二值图像,或去除指定级别的噪声,或过滤掉过小或者过大的像素点;

Argument:
src: 原图像
dst: 目标图像
thresh: 阈值
type: 指定阈值类型;下面会列出具体类型;
maxval: 当type指定为THRESH_BINARY或THRESH_BINARY_INV时,需要设置该值;

4、compare_psnr 计算彩色 图像信噪比

5、np.power(x1,x2)
数组的元素分别求n次方。x2可以是数字,也可以是数组,但是x1和x2的列数要相同。

x1 = range(6)
>>> x1
[0, 1, 2, 3, 4, 5]
>>> np.power(x1, 3)
array([  0,   1,   8,  27,  64, 125])

6、enumerate() 函数
enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中。

enumerate(sequence, [start=0])

参数
sequence – 一个序列、迭代器或其他支持迭代对象。
start – 下标起始位置。
返回值
返回 enumerate(枚举) 对象。

7、np.max 与 np.maximum

np.max:(a, axis=None, out=None, keepdims=False)
求序列的最值,最少接收一个参数

axis:默认为列向(也即 axis=0),axis = 1 时为行方向的最值;

np.maximum:(X, Y, out=None)

X 与 Y 逐位比较取其大者;
最少接收两个参数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值