IDEA(使用tomcat)可以运行servlet,但是由html跳转到servlet是404

IDEA在不修改端口的前提下,
有如下文件:
web目录——>input1.html
项目直属目录——>input2.html

在这里插入图片描述
1.不运行tomcat,直接点浏览器标志跳转到网页
input1.html端口号是63342在这里插入图片描述

input2.html端口号是63342在这里插入图片描述

2.运行tomcat,直接点浏览器标志跳转到网页
input1.html端口号是tomcat的默认端口号8080在这里插入图片描述
input2.html端口号是63342
在这里插入图片描述
如果将http://localhost:8080/ServletStudy/input1.html中的input1.html改为input2.html,将会有404问题
在这里插入图片描述
试着把html文件放在web目录下,问题解决,html可以成功跳转到servlet!
所以一般都是把html、jsp文件放在web或者webapp目录下,否则会404错误。

刚开始学servlet自己一直把html文件放在项目直属目录下,导致一直404错误。网上查资料,修改Setting那里的端口号或者是修改tomcat中的端口号,总是会发生端口号冲突,今天早上试着试着就发现了问题所在。
通过这件事,明白到:尽管现在网上资源很多,有问题可以方便地查询,之前敲代码时遇到的问题大都可以通过上网解决。但是,要有自己辨别对错的能力,不能在网上看到一个别人的解决方法就乱试,导致最后修改了很多地方,不对的也给修改错了,这样只会越来越乱。
总之,解决问题的能力还很差,切记,遇到报错与问题,静下心来慢慢分析,慢慢解决,bug总会解决的。

### 结合YOLOv8与PaddleOCR进行目标检测和文字识别 #### 数据准备 为了使YOLOv8能够有效地定位图像中的车牌位置,需先准备好标注好的训练集。这些数据应包含不同环境下的车辆图片以及对应的标签文件,用于指示每张图里车牌的具体坐标。 #### 模型配置 对于YOLOv8而言,在`yolov8.yaml`配置文档内指定输入尺寸、锚框参数等超参设置;而针对PaddleOCR,则无需额外调整其默认设定即可满足大多数场景需求[^3]。 #### 代码实现 下面给出一段Python脚本片段来展示怎样串联起这两个组件: ```python from ultralytics import YOLO from paddleocr import PaddleOCR def detect_and_recognize(image_path): # 加载YOLOv8模型并执行预测操作 model = YOLO('path/to/yolov8.pt') results = model.predict(source=image_path, conf=0.25) ocr = PaddleOCR(use_angle_cls=True, lang='en') final_result = [] for result in results: boxes = result.boxes.cpu().numpy() for box in boxes: cropped_image = crop_box_from_image(image_path, box) # 自定义函数裁剪区域 ocr_results = ocr.ocr(cropped_image, cls=True) recognized_text = ''.join([line[1][0] for line in ocr_results]) final_result.append({ 'bbox': list(map(int, box[:4])), 'text': recognized_text, 'confidence': float(box[-1]), }) return final_result ``` 此段程序首先利用YOLOv8完成对给定路径下图片的目标检测任务,随后依据所得边界框信息截取出可能含有字符的部分送入至PaddleOCR作进一步的文字解析工作,最终返回融合后的结构化输出结果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值