深度学习基础(楚才国科)

我们在学习成熟网络模型时,如VGG、Inception、Resnet等,往往面临的第一个问题便是这些模型的各层参数是如何设置的呢?另外,我们如果要设计自己的网路模型时,又该如何设置各层参数呢?如果模型参数设置出错的话,其实模型也往往不能运行了。

  所以,我们需要首先了解模型各层的含义,比如输出尺寸和可训练参数数量。理解后,大家在设计自己的网路模型时,就可以先在纸上画出网络流程图,设置各参数,计算输出尺寸和可训练参数数量,最后就可以照此进行编码实现了。

  而在keras中,当我们构建模型或拿到一个成熟模型后,往往可以通过model.summary()来观察模型各层的信息。

  本文将通过一个简单的例子来进行说明。本例以keras官网的一个简单模型VGG-like模型为基础,稍加改动代码如下:

复制代码
from tensorflow import keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.layers import Conv2D, MaxPool2D

(train_data, train_labels), (test_data, test_labels) = keras.datasets.mnist.load_data()
train_data = train_data.reshape(-1, 28, 28, 1)
print(“train data type:{}, shape:{}, dim:{}”.format(type(train_data), train_data.shape, train_data.ndim))

第一组

model = Sequential()
model.add(Conv2D(filters=32, kernel_size=(3, 3), strides=(1, 1), padding=’valid’, activation=’relu’, input_shape=(28, 28, 1)))
model.add(Conv2D(filters=32, kernel_size=(3, 3), strides=(1, 1), padding=’valid’, activation=’relu’))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

第二组

model.add(Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding=’valid’, activation=’relu’))
model.add(Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding=’valid’, activation=’relu’))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

第三组

model.add(Flatten())
model.add(Dense(units=256, activation=’relu’))
model.add(Dropout(0.5))
model.add(Dense(units=10, activation=’softmax’))

model.summary()
复制代码
  本例的数据来源于mnist,这是尺寸为28*28,通道数为1,也即只有黑白两色的图片。其中卷积层的参数含义为:

  filters:表示过滤器的数量,每一个过滤器都会与对应的输入层进行卷积操作;
  kernel_size:表示过滤器的尺寸,一般为奇数值,如1,3,5,这里设置为3*3大小;
  strides:表示步长,即每一次过滤器在图片上移动的步数;
  padding:表示是否对图片边缘填充像素,一般有两个值可选,一是默认的valid,表示不填充像素,卷积后图片尺寸会变小;另一种是same,填充像素,使得输出尺寸和输入尺寸保持一致。
     如果选择valid,假设输入尺寸为n * n,过滤器的大小为f * f,步长为s,则其输出图片的尺寸公式为:[(n - f)/s + 1] * [(n -f)/s + 1)],若计算结果不为整数,则向下取整;

     如果选择same,假设输入尺寸为n * n,过滤器的大小为f * f,要填充的边缘像素宽度为p,则计算p的公式为:n + 2p -f +1 = n, 最后得 p = (f -1) /2。

  运行上述例子,可以看到如下结果:

复制代码
train data type:

Layer (type) Output Shape Param #

conv2d (Conv2D) (None, 26, 26, 32) 320


conv2d_1 (Conv2D) (None, 24, 24, 32) 9248


max_pooling2d (MaxPooling2D) (None, 12, 12, 32) 0


dropout (Dropout) (None, 12, 12, 32) 0


conv2d_2 (Conv2D) (None, 10, 10, 64) 18496


conv2d_3 (Conv2D) (None, 8, 8, 64) 36928


max_pooling2d_1 (MaxPooling2 (None, 4, 4, 64) 0


dropout_1 (Dropout) (None, 4, 4, 64) 0


flatten (Flatten) (None, 1024) 0


dense (Dense) (None, 256) 262400


dropout_2 (Dropout) (None, 256) 0


dense_1 (Dense) (None, 10) 2570

Total params: 329,962
Trainable params: 329,962
Non-trainable params: 0
复制代码
  让我们解读下,首先mnist为输入数据,尺寸大小为 (60000, 28, 28, 1), 这是典型的NHWC结构,即(图片数量,宽度,高度,通道数);

  其次我们需要关注表格中的”output shape”输出尺寸,其遵循mnist一样的结构,只不过第一位往往是None,表示图片数待定,后三位则按照上述规则进行计算;

  最后关注的是”param”可训练参数数量,不同的模型层计算方法不一样:

  对于卷积层而言,假设过滤器尺寸为f * f, 过滤器数量为n, 若开启了bias,则bias数固定为1,输入图片的通道数为c,则param计算公式= (f * f * c + 1) * n;
  对于池化层、flatten、dropout操作而言,是不需要训练参数的,所以param为0;
  对于全连接层而言,假设输入的列向量大小为i,输出的列向量大小为o,若开启bias,则param计算公式为=i * o + o
  按照代码中划分的三组模型层次,其输出尺寸和可训练参数数量的计算方法可如下图所示:

  第一组:
这里写图片描述
这里写图片描述
这里写图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值