强化学习是人工智能中讨论最多、关注最多和考虑最多的话题之一,因为它有潜力改变大多数行业。在这篇文章中,将会提供简单的解释什么是强化学习,并提供一些实际的例子来说明它是如何使用的。
什么是强化学习?
强化学习的核心是通过积极奖励(强化信号)来强化最佳行为或行动的概念。
机器和软件代理使用强化学习算法,根据环境的反馈来确定理想的行为。它是机器学习的一种形式,因此也是人工智能的一个分支。
根据问题的复杂性,如果需要,强化学习算法可以随着时间的推移不断适应环境,从而在长期内获得最大的回报。所以,就像蹒跚学步的孩子一样,一个正在学习强化学习的机器人会尝试不同的方法来达到目标,获得有关这些方式成功的反馈,然后调整直到目标达到。向前迈一大步,机器人就会倒下,所以它会调整自己的步伐,以看看这是不是保持直立的秘诀。它通过不同的变化继续学习,最终能够行走。在这个例子中,奖励是直立的,而惩罚是下降的。基于机器人对其动作的反馈,优化动作得到强化。
强化学习例子
1、机器人
强化学习为机器人学提供了一个“框架和一套工具”,用于处理难以设计的行为。由于强化学习可以在没有监督的情况下进行,这可以帮助机器人成倍增长。
2、工业自动化
得益于DeepMind的强化学习功能,谷歌能够大幅降低数据中心的能耗。 最近被微软收购的Bonsai提供了一种强化学习解决方案,可以在能源,HVAC,制造,汽车和供应链中实现自动化和将智能构建到复杂和动态系统中。
3、加强预测性维护
机器学习已经在制造业中使用了一段时间,但强化学习可以使预测性维护比现在做的更好。
4、游戏
事实上,强化学习获得声望的第一个应用是机器学习算法AlphaGo在围棋中赢得了世界上最好的人类玩家之一,现在强化学习被用于各种游戏的竞争。
人工智能交流群 862729908