1.介绍:
本文主要基于Coursera上deeplearning.ai的课程 自然语言处理 专项课程(Natural Language Processing Specialization),将全部课程内容进行梳理并结合个人理解进行了总结。意在总结笔记加深理解,同时也为其他学习该课程或想学习NLP相关知识的同学提供参考。
因本人仍在学习过程中,水平有限,难免有疏忽与错误,诚请各位指正。
2.相关参考资料:
课程原地址Coursera:Natural Language Processing | Coursera
B站转载:【吴恩达团队自然语言处理第一课】分类和向量空间_哔哩哔哩_bilibili
课程作业代码:GitHub - Ogmx/Natural-Language-Processing-Specialization
3.课程笔记:
1.使用分类和词向量进行自然语言处理(Natural Language Processing with Classification and Vector Spaces)
1.1 监督学习与情感分析(Supervised ML & Sentiment Analysis)
1.2 情感分析与朴素贝叶斯(Sentiment Analysis with Naïve Bayes)
1.3 向量空间模型(Vector Space Models)
1.4 机器翻译与文件搜索(Machine Translation and Document Search)
2.使用概率模型进行自然语言处理(Natural Language Processing with Probabilistic Models)
2.1 最小编辑距离与自动拼写纠正(Autocorrect)
2.2 词性标注与隐式马尔科夫模型(Part of Speech Tagging and Hidden Markov Models)
2.3 自动补全与语言模型(Autocomplete and Language Models)
2.4 词嵌入与CBOW模型(Word embeddings with neural networks)
3.使用序列模型进行自然语言处理(Natural Language Processing with Sequence Models)
3.1 用神经网络进行情感分析(Neural Networks for Sentiment Analysis)
3.2 使用RNN构建语言模型(Recurrent Neural Networks for Language Modeling)
3.3 LSTM与命名实体识别(LSTMs and Named Entity Recognition)
3.4 孪生神经网络与单样本学习(Siamese Networks and One Shot Learning)
4.使用注意力模型进行自然语言处理(Natural Language Processing with Attention Models)
4.1 用序列到序列模型进行机器翻译(Neural Machine Translation and Seq2Seq Models)
4.2 Transformers与文章摘要生成(Transformers and Text Summarization)
4.3 BERT、T5与问答系统(BERT&T5&Question Answering)
4.4 Reformer与对话机器人(Reformer and Chatbot)
4.编程实战
课程笔记部分已完结,✿✿ヽ(°▽°)ノ✿完结撒花!
编程实战持续更新中,敬请关注~