
RAG知识库
文章平均质量分 93
RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合信息检索和生成模型的技术,旨在提升大语言模型(LLM)在知识密集型任务中的表现。它通过将外部知识库与生成模型结合,解决了传统大模型的以下
MrJson-架构师
这个作者很懒,什么都没留下…
展开
-
【RAG落地利器】Weaviate、Milvus、Qdrant 和 Chroma 向量数据库对比
向量数据库是一种将数据存储为高维向量的数据库,高维向量是特征或属性的数学表示。每个向量都有一定数量的维度,根据数据的复杂性和粒度,可以从数十到数千不等。向量通常是通过对原始数据(如文本、图像、音频、视频等)应用某种转换或嵌入函数来生成的。嵌入函数可以基于各种方法,如机器学习模型、词嵌入和特征提取算法。向量数据库的主要优点是,它允许基于数据的向量距离或相似性进行快速和准确的相似性搜索和检索。这意味着不用使用基于精确匹配或预定义标准查询数据库。原创 2025-02-14 22:44:16 · 1766 阅读 · 0 评论 -
DeepSearcher开源:告别传统RAG,私有数据+Deepseek,打造本地版Deep Research
OpenAI近期推出了一款名为Deep Research的高级AI研究工具,旨在帮助用户高效完成复杂的研究任务。该工具基于OpenAI最新的o3模型,专为网络浏览和数据分析优化。在本文写作过程中,笔者在思索如何对Deep Research做本地化复现的过程中,也有几个思考想要做一个分享:1、数据会成为未来企业的生存红线,掌握优质数据的企业,也就拥有了Deep Research +N,脱颖而出的机会,而在这一背景下,数据隐私大于天,如何做好数据保护,是在接入AI能力之前要更早考虑的事情。原创 2025-02-13 19:53:52 · 3100 阅读 · 0 评论