DeepSearcher开源:告别传统RAG,私有数据+Deepseek,打造本地版Deep Research

前言

近日,Open AI的Deep Research(深度研究)功能一经推出,迅速受到诸多关注,通过将大模型+超级搜索+研究助理的三合一,金融机构一键生成报告、科研党一键生成综述成为可能。

但囿于企业场景私有化数据的敏感性以及成本问题,如何基于Deep Research做开源的本地化部署,成为不少人关心的问题。

在本篇文章里,我们将对市面上复现Deep Research的各类开源项目做一个简单的分析,并结合Deepseek等主流开源模型,推出开源项目Deep Searcher,帮助大家在企业级场景中,基于Deep Research思路,做私有化部署。这个方案也在目前常见的RAG方案上做了重大升级。

Github 尝鲜链接https://github.com/zilliztech/deep-searcher

什么是Deep Research,为什么需要开源平替?

OpenAI近期推出了一款名为Deep Research的高级AI研究工具,旨在帮助用户高效完成复杂的研究任务。该工具基于OpenAI最新的o3模型,专为网络浏览和数据分析优化。

主要功能

(1)多步骤信息收集与推理:Deep Research能够自主进行多步骤的网络调查,快速整合来自互联网的海量信息,包括文本、图像和PDF文件。

(2)专业级报告生成:通过分析和综合数百个在线资源,Deep Research能在5到30分钟内生成一份带有详细引用的专业报告,大幅缩短传统研究所需时间。

### Ollama + DeepSeek-R1:32B + Docker + RAG Flow/Open WebUI 本地部署 #### 简介 DeepSeek是由阿里云推出的大型语言模型,而`DeepSeek-R1:32B`是指该系列的一个特定本,拥有约320亿参数规模。为了方便用户使用这个强大的模型,可以通过Docker容器化技术以及RAG (Retrieval-Augmented Generation) 流程来进行本地环境下的快速部署。 #### 部署步骤概述 1. **安装Docker**:如果你还没有安装Docker的话,则需要先下载并按照官方指南完成其设置过程; - [Docker官网](https://www.docker.com/) 2. **获取镜像文件**: 使用Ollama提供的命令行工具或者直接从仓库拉取包含有预训练权重和其他必要组件的docker image ```bash docker pull ollama/deepseek-r1:32b # 假设这是正确的标签名称 ``` 3. **配置数据集与索引构建**: 对于想要增强生成结果准确性的场景来说,在启动之前还需要准备相应的文本资料库,并通过一些额外脚本创建搜索索引来支持检索增强功能(Retrieve Augment Generate)。 4. **运行Web UI服务端口映射等选项自定义** 根据个人需求调整命令参数如开放HTTP访问地址、设定内存限制等等。 ```bash docker run --name my_deepseek_webui -p 7860:7860 ollama/deepseek-webui:latest ``` 5. **打开浏览器连接至localhost指定端口号即可开始体验** 以上即是在个人电脑上搭建基于ollama平台发布的deepseek大模型加web界面交互的整体流程简介。 --- 需要注意的是实际操作过程中可能会遇到各种问题比如依赖项冲突或者是硬件资源不足等问题,建议参考具体产品的文档说明进一步排查解决办法。 --
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值