前言
近日,Open AI的Deep Research(深度研究)功能一经推出,迅速受到诸多关注,通过将大模型+超级搜索+研究助理的三合一,金融机构一键生成报告、科研党一键生成综述成为可能。
但囿于企业场景私有化数据的敏感性以及成本问题,如何基于Deep Research做开源的本地化部署,成为不少人关心的问题。
在本篇文章里,我们将对市面上复现Deep Research的各类开源项目做一个简单的分析,并结合Deepseek等主流开源模型,推出开源项目Deep Searcher,帮助大家在企业级场景中,基于Deep Research思路,做私有化部署。这个方案也在目前常见的RAG方案上做了重大升级。
Github 尝鲜链接https://github.com/zilliztech/deep-searcher
什么是Deep Research,为什么需要开源平替?
OpenAI近期推出了一款名为Deep Research的高级AI研究工具,旨在帮助用户高效完成复杂的研究任务。该工具基于OpenAI最新的o3模型,专为网络浏览和数据分析优化。
主要功能
(1)多步骤信息收集与推理:Deep Research能够自主进行多步骤的网络调查,快速整合来自互联网的海量信息,包括文本、图像和PDF文件。
(2)专业级报告生成:通过分析和综合数百个在线资源,Deep Research能在5到30分钟内生成一份带有详细引用的专业报告,大幅缩短传统研究所需时间。