——除了上帝,我只相信数据
在数据呈指数增长的这个数字世界中,深度学习和大数据是最为热门的两个技术趋势。深度学习和大数据是数据科学领域相互关联的两个话题,而在技术发展方面,两者紧密关联且同样重要。
数字数据和云存储遵循名为摩尔定律的通用定律,摩尔定律我们在之前就有提到过。因特尔创始人摩尔认为数据每两年就会翻一番,而存储该数据的成本却大致以相同的速率下降。这些丰富的数据产生了更多的特征和真理,因此为了从中提取所有有价值的信息,我们应当试图创建更好的深度学习模型。
数据的高可用性也为多个行业带来了巨大的机遇。此外,大数据及其分析为数据挖掘、数据应用和从数据中提取隐藏信息带来了巨大挑战。在人工智能领域,深度学习算法会在大规模数据的学习过程中产生最佳输出。因此,随着数据以前所未有的速度增长,深度学习在提供大数据分析解决方案方面也同样起着至关重要的作用。
在这个EB数据规模的时代,数据仍以指数级速度迅速增长。出于各种目的,许多组织和研究人员以不同方式对数据的快速增长进行了分析。国际数据公司(International Data Corporation,IDC)的调查显示,互联网每天处理约2PB(1PB=1024TB,1TB=1024GB)的数据。2006年,数字数据的规模约为0.18ZB(1ZB=1024EB,1EB=1024PB),而到2011年,这一规模已经达到了1.8ZB。
截至2015年,该数字已达到10ZB之多。预计2020年全球数据量将增长到30-35ZB左右。在数字的世界中,这些海量的数据被正式定义为“Big Data”也就是大数据。
Facebook有两亿左右用户,超过20PB数据,而美国橡树岭国家实验室的Jaguar超级计算机拥有超过5PB的数据。这些存储数据增长得如此迅速,因此在2018年——2020年可能会使用EB规模的存储系统。
数据的这种爆炸式增长肯定会对传统的数据密集型计算产生直接威胁,并引出使用分布式和可拓展存储架构来查询和分析大规模数据的需求。大数据的一般思路是,原始数据非常复杂、混乱,且持续增长。一个理想的大数据集应由大量的无监督原始数据和少量的结构化/分类数据组成。因此,在处理这些大量的非固定结构化数据时,传统的数据密集型计算往往会失败。具有无穷多样性的大数据需要复杂的方法和工具,以提取模式并分析大规模数据。大数据的增长主要是由现代系统计算能力的增长及低廉的数据存储成本促成的。
大数据的所有这些特征可以分为4个维度,
深度学习与大数据
最新推荐文章于 2024-01-05 00:55:41 发布