题意
给你一段长度为n(1 ≤ n ≤ 3·1e5)的序列,m (1 ≤ p ≤ 3·1e5)个询问,每次询问a,a+b,a+2b+…<=n的和
思路
一开始一直想也想不到怎么分,去维护哪些信息,看了题解才知道 其实分块不仅仅可以将一列序列分块,还可以将数据进行分块,下面讨论具体做法
首先这道题不是在线询问,可以离线做,先读入所有的询问,将询问从小到大排序
①当b<√n时,对于每一个b我们可以预处理出这样的一个数组sum[i],就是以i为起点间隔为b的序列和(可以用一个简单的dp求出来),然后O(1)查询,这么做的好处就是如果不同的询问a不同,b相同,经过排序我们就可以直接使用这个sum数组,时间复杂度为O(n√n)。
②当b≥√n时,直接暴力求和,时间复杂度为O(m√n)
所以总时间复杂度为O((m+n)√n)
代码
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=3e5+10;
typedef long long ll;
ll a[maxn];
struct node{
int a,b,id;
bool operator<(const node &s) const
{
return b<s.b;
}
}b[maxn];
ll ans[maxn];
ll sum_b[maxn];
int main()
{
int n,m;
scanf("%d",&n);
int bl=sqrt(n);
for(int i=1;i<=n;i++)
scanf("%I64d",&a[i]);
scanf("%d",&m);
for(int i=1;i<=m;i++){
b[i].id=i;
scanf("%d%d",&b[i].a,&b[i].b);
}
sort(b+1,b+1+m);
b[0].b=0;
for(int i=1;i<=m;i++){
if(b[i].b>=bl){
ans[b[i].id]=0;
for(int k=b[i].a;k<=n;k+=b[i].b)
ans[b[i].id]+=a[k];
}
else{
if(b[i].b==b[i-1].b){
ans[b[i].id]=sum_b[b[i].a];
}
else{
for(int j=n;j>=1;j--)
if(j+b[i].b>n)
sum_b[j]=a[j];
else
sum_b[j]=sum_b[j+b[i].b]+a[j];
ans[b[i].id]=sum_b[b[i].a];
}
}
}
for(int i=1;i<=m;i++)
printf("%I64d\n",ans[i]);
return 0;
}