(分块暴力)Time to Raid Cowavans CodeForces - 103D

题意

给你一段长度为n(1 ≤ n ≤ 3·1e5)的序列,m (1 ≤ p ≤ 3·1e5)个询问,每次询问a,a+b,a+2b+…<=n的和

思路

一开始一直想也想不到怎么分,去维护哪些信息,看了题解才知道 其实分块不仅仅可以将一列序列分块,还可以将数据进行分块,下面讨论具体做法
首先这道题不是在线询问,可以离线做,先读入所有的询问,将询问从小到大排序
①当b<√n时,对于每一个b我们可以预处理出这样的一个数组sum[i],就是以i为起点间隔为b的序列和(可以用一个简单的dp求出来),然后O(1)查询,这么做的好处就是如果不同的询问a不同,b相同,经过排序我们就可以直接使用这个sum数组,时间复杂度为O(n√n)。
②当b≥√n时,直接暴力求和,时间复杂度为O(m√n)
所以总时间复杂度为O((m+n)√n)

代码

#include<iostream>
#include<algorithm>
#include<cmath>
 using namespace std;
 const int maxn=3e5+10;
 typedef long long ll;
 ll a[maxn];
 struct node{
 	int a,b,id;
 	bool operator<(const node &s) const
 	{
 		return b<s.b;
	 }
 }b[maxn];
 ll ans[maxn];
 ll sum_b[maxn];
 int main()
 {
 	int n,m;
 	scanf("%d",&n);
 	int bl=sqrt(n);
 	for(int i=1;i<=n;i++)
 		scanf("%I64d",&a[i]);
 	scanf("%d",&m);
 	for(int i=1;i<=m;i++){
 		b[i].id=i;
 		scanf("%d%d",&b[i].a,&b[i].b);
	 }
 	sort(b+1,b+1+m);
 	b[0].b=0;
	for(int i=1;i<=m;i++){
		if(b[i].b>=bl){
			ans[b[i].id]=0;
			for(int k=b[i].a;k<=n;k+=b[i].b)
				ans[b[i].id]+=a[k];
		}
		else{
			if(b[i].b==b[i-1].b){
				ans[b[i].id]=sum_b[b[i].a];
			}
			else{
				for(int j=n;j>=1;j--)
					if(j+b[i].b>n)
						sum_b[j]=a[j];
					else
						sum_b[j]=sum_b[j+b[i].b]+a[j];
				ans[b[i].id]=sum_b[b[i].a];
			}
		}
	}
	for(int i=1;i<=m;i++)
		printf("%I64d\n",ans[i]);
	return 0;
  } 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值