自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 资源 (1)
  • 收藏
  • 关注

原创 哲学家与心理学家在选择性知觉上的不谋而合

《有限与无限的游戏》中关于“从不只是去看,而是去看见”的论述与《决策与判断》所说的“选择性知觉”遥相呼应。奇妙的是,前者来自哲学家,后者来自心理学家。《决策与判断》所说的选择性知觉(研究案例不做摘录):我们不是先看见再定义,而是先定义再看见。知觉的本质就是具有选择性。即便只是识别一张扑克牌——或是酒醉的感觉——也在很大程度上取决于认知和动机因素。因此,在做任何重大决策或判断之前,很值得停下...

2019-08-13 10:55:01 441

原创 53剧本性与传奇性的冲突

从传奇化角度说,每一个出生都是天才的出生。在新的天才出生之时正在上演的传奇,因为天才的横空出世而被带往新的可能性。然而这出传奇已经充斥了有限游戏的参与者,他们努力地忘记很多东西,并总想保持现状。如果我生在(加入)某个家庭文化中,我也是其政治的产物及公民。在为我准备好的那些形形色色的角色中——长子、最得宠的女儿、家族继承人、家族复活者——我首先体验到了剧本性和传奇性之间的冲突。假设你的周围大...

2019-07-26 23:16:40 315

转载 52从不只是去看,而是去看见

从不只是看,而是去看见。看某个东西,就是在它的限制之中看它。我看着的是被划分出来、与其他东西区别开来的东西。但是事物本身并没有受到限制。没有东西是自己限制自己的。海鸥顺着不可见的洋流飞翔,猫咪趴在我的桌子上,远处救护车发出的警报,都不是决然与其环境想分的。它们自己就是环境。要去看它们,首先必须为这个问题寻求到答案:我把它们当作什么。我看一只海鸥——我是在寻找一些东西。我也许将海鸥视为陆地...

2019-07-26 22:41:46 153

原创 3 §1.2第6题、§1.4例2、§1.4第8题、总练习题1第12题和13题

《数学分析 第四版 华东师范大学数学组编》§1.26.设 SSS 为非空数集,定义 S−={x∣−x∈S}S^{-}=\{x |-x \in S\}S−={x∣−x∈S},证明:(1) inf⁡S−=−sup⁡S\inf S^{-}=-\sup SinfS−=−supS; (2)sup⁡S−=−inf⁡S\sup S^{-}=-\inf SsupS−=−infS.《数学分析 第四版 华东...

2019-07-26 18:17:45 226

原创 5 教材P26定义1撇、P27例8例9、P34定理2.8、§2.2第7题、总练习题2第10题和§3.3第4题

2019-07-26 18:17:17 166

原创 4 §1.4、总练习题1 形式上颇为相似的三道题目

为方便对照形式,题目已经过改动《数学分析 第四版 华东师范大学数学组编》 §1.46.设函数定义在上,证明:(1)F(x)=12(f(x)+f(−x)),x∈[−a,a]F(x)=\frac{1}{2}(f(x)+f(-x)), x \in[-a, a]F(x)=21​(f(x)+f(−x)),x∈[−a,a]为偶函数;(2)G(x)=12(f(x)−f(−x)),x∈[−a,a]G(x)...

2019-07-26 18:16:45 288

原创 2 §1.1 一个数论经典结论证明剖析

先展示题目:《数学分析 第四版 华东师范大学数学组编》§1.18.设 ppp 为正整数.证明:若 ppp 不是完全平方数,则 p\sqrt pp​ 是无理数.证明:(序号便于下文还原思维过程)用反证法,假设 p\sqrt pp​ 为有理数.则 ∃m,n∈N∗\exists m,n\in N^{*}∃m,n∈N∗ 使得 p=mn\sqrt p=\frac{m}{n}p​=nm​,且 m...

2019-07-11 15:20:20 634

原创 1 §1.1 一道不等式求解以及引发的思考

先展示题目:2.试求下列不等式的解:(3)x−1−2x−1⩾3x−2\sqrt{x-1}-\sqrt{2 x-1} \geqslant \sqrt{3 x-2}x−1​−2x−1​⩾3x−2​对于一个本科生而言,这应该是一道很简单的题目。但是在六天前开始重写教材习题时,我发现之前从未搞懂过这道题,以至于现在我都怀疑是否真正搞懂了这道题。现在试着探讨之。看到不等式两端的根号会自然地想到将两端...

2019-07-11 00:33:18 217

一元微积分.png

一元微积分思维导图(不完整)、专业术语不严谨缩略。

2019-07-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除