2 §1.1 一个数论经典结论证明剖析

本文分析了《数学分析 第四版 华东师范大学数学组编》中关于非完全平方数为无理数的证明,通过反证法详细探讨了证明过程,指出传统的证明方式可能忽视了人类思维的创造过程。通过逐步还原思维,阐述了从假设到结论的每一步,强调了理解证明动机和推导技术的重要性。
摘要由CSDN通过智能技术生成

先展示题目:
《数学分析 第四版 华东师范大学数学组编》§1.1
8.设 p p p 为正整数.证明:若 p p p 不是完全平方数,则 p \sqrt p p 是无理数.

证明:
(序号便于下文还原思维过程)

  1. 用反证法,假设 p \sqrt p p 为有理数.
  2. ∃ m , n ∈ N ∗ \exists m,n\in N^{*} m,nN 使得 p = m n \sqrt p=\frac{m}{n} p =nm,且 m m m n n n 互质.
  3. 于是 m 2 = p n 2 m^{2}=pn^{2} m2=pn2.
  4. 可见 n n n 能整除 m 2 m^{2} m2.
  5. 由于 m m m n n n 互质,从而他们的最大公约数为 1 1 1.
  6. 由辗转相除法知: ∃ u , v ∈ N ∗ \exist u,v\in N^{*} u,vN使得 m u + n v = 1 mu+nv=1 mu+nv=1.
  7. m 2 u + m n v = m m^{2}u+mnv=m m2u+mnv=m .
  8. n n n 能整除 m 2 m^{2} m2; m 2 n m^{2}n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值