先展示题目:
《数学分析 第四版 华东师范大学数学组编》§1.1
8.设 p p p 为正整数.证明:若 p p p 不是完全平方数,则 p \sqrt p p 是无理数.
证明:
(序号便于下文还原思维过程)
- 用反证法,假设 p \sqrt p p 为有理数.
- 则 ∃ m , n ∈ N ∗ \exists m,n\in N^{*} ∃m,n∈N∗ 使得 p = m n \sqrt p=\frac{m}{n} p=nm,且 m m m 与 n n n 互质.
- 于是 m 2 = p n 2 m^{2}=pn^{2} m2=pn2.
- 可见 n n n 能整除 m 2 m^{2} m2.
- 由于 m m m与 n n n 互质,从而他们的最大公约数为 1 1 1.
- 由辗转相除法知: ∃ u , v ∈ N ∗ \exist u,v\in N^{*} ∃u,v∈N∗使得 m u + n v = 1 mu+nv=1 mu+nv=1.
- 则 m 2 u + m n v = m m^{2}u+mnv=m m2u+mnv=m .
- 因 n n n 能整除 m 2 m^{2} m2; m 2 n m^{2}n