3 §1.2第6题、§1.4例2、§1.4第8题、总练习题1第12题和13题

《数学分析 第四版 华东师范大学数学组编》§1.2
6.设 S S S 为非空数集,定义 S − = { x ∣ − x ∈ S } S^{-}=\{x |-x \in S\} S={xxS},证明:
(1) inf ⁡ S − = − sup ⁡ S \inf S^{-}=-\sup S infS=supS; (2) sup ⁡ S − = − inf ⁡ S \sup S^{-}=-\inf S supS=infS.

《数学分析 第四版 华东师范大学数学组编》§1.4
§1.4例2
§1.4第8题

《数学分析 第四版 华东师范大学数学组编》总练习题1
12.设 f ( x ) 、 g ( x ) f(x)、g(x) f(x)g(x) D D D上的有界函数.证明:
(1) inf ⁡ x ∈ D { f ( x ) + g ( x ) } ⩽ inf ⁡ x ∈ D f ( x ) + sup ⁡ x ∈ D g ( x ) \inf _{x \in D}\{f(x)+g(x)\} \leqslant \inf _{x \in D} f(x)+\sup _{x\in D}g(x) xDinf{f(x)+g(x)}xDinff(x)+xDsupg(x)
(2) sup ⁡ x ∈ D f ( x ) + inf ⁡ x ∈ D g ( x ) ⩽ sup ⁡ x ∈ D { f ( x ) + g ( x ) } \sup _{x \in {D}} f(x)+\inf _{x \in D} g(x) \leqslant \sup _{x \in D}\{f(x)+g(x)\} xDsupf(x)+xDinfg(x)xDsup{f(x)+g(x)}
证明:
(1)由§1.4第8题可得: sup ⁡ x ∈ D g ( x ) = − inf ⁡ x ∈ D { − g ( x ) } \sup _{x \in D} g(x)=-\inf _{x \in D} \{-g(x)\} xDsupg(x)=xDinf{g(x)}那么 inf ⁡ x ∈ D f ( x ) + sup ⁡ g ( x ) = inf ⁡ x ∈ D f ( x ) − inf ⁡ x ∈ D { − g ( x ) } \inf _{x \in D} f(x)+\operatorname{sup}g(x) = \inf _{x \in D} f(x)-\inf _{x \in D} \{-g(x)\} xDinff(x)+supg(x)=xDinff(x)xDinf{g(x)}                                ⩾ inf ⁡ x ∈ D { f ( x ) − [ − g ( x ) ] } \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \geqslant \inf _{x\in D}\{f(x)-[-g(x)]\}                               xDinf{f(x)[g(x)]}                           = inf ⁡ x ∈ D { f ( x ) + g ( x ) } \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\inf _{x\in D}\{f(x)+g(x)\}                          =xDinf{f(x)+g(x)}事实上,对于上个式子的不等号:
观察不等式两边有 f ( x ) = f ( x ) + g ( x ) + [ − g ( x ) ] f(x)=f(x)+g(x)+[-g(x)] f(x)=f(x)+g(x)+[g(x)]立即有 inf ⁡ x ∈ D f ( x ) = inf ⁡ x ∈ D { f ( x ) + g ( x ) + [ − g ( x ) ] } ⩾ inf ⁡ x ∈ D { f ( x ) + g ( x ) } + inf ⁡ x ∈ D { − g ( x ) } \inf _{x\in D}f(x)=\inf _{x\in D}\{f(x)+g(x)+[-g(x)]\} \geqslant \inf _{x\in D}\{f(x)+g(x)\}+\inf _{x\in D}\{-g(x)\} xDinff(x)=xDinf{f(x)+g(x)+[g(x)]}xDinf{f(x)+g(x)}+xDinf{g(x)}再次利用 sup ⁡ x ∈ D g ( x ) = − inf ⁡ x ∈ D { − g ( x ) } \sup _{x \in D} g(x)=-\inf _{x \in D} \{-g(x)\} xDsupg(x)=xDinf{g(x)}整理后即可得到 inf ⁡ x ∈ D { f ( x ) + g ( x ) } ⩽ inf ⁡ x ∈ D f ( x ) + sup ⁡ x ∈ D g ( x ) \inf _{x \in D}\{f(x)+g(x)\} \leqslant \inf _{x \in D} f(x)+\sup _{x\in D}g(x) xDinf{f(x)+g(x)}xDinff(x)+xDsupg(x)证毕.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值