《数学分析 第四版 华东师范大学数学组编》§1.2
6.设
S
S
S 为非空数集,定义
S
−
=
{
x
∣
−
x
∈
S
}
S^{-}=\{x |-x \in S\}
S−={x∣−x∈S},证明:
(1)
inf
S
−
=
−
sup
S
\inf S^{-}=-\sup S
infS−=−supS; (2)
sup
S
−
=
−
inf
S
\sup S^{-}=-\inf S
supS−=−infS.
《数学分析 第四版 华东师范大学数学组编》§1.4
《数学分析 第四版 华东师范大学数学组编》总练习题1
12.设
f
(
x
)
、
g
(
x
)
f(x)、g(x)
f(x)、g(x)为
D
D
D上的有界函数.证明:
(1)
inf
x
∈
D
{
f
(
x
)
+
g
(
x
)
}
⩽
inf
x
∈
D
f
(
x
)
+
sup
x
∈
D
g
(
x
)
\inf _{x \in D}\{f(x)+g(x)\} \leqslant \inf _{x \in D} f(x)+\sup _{x\in D}g(x)
x∈Dinf{f(x)+g(x)}⩽x∈Dinff(x)+x∈Dsupg(x)
(2)
sup
x
∈
D
f
(
x
)
+
inf
x
∈
D
g
(
x
)
⩽
sup
x
∈
D
{
f
(
x
)
+
g
(
x
)
}
\sup _{x \in {D}} f(x)+\inf _{x \in D} g(x) \leqslant \sup _{x \in D}\{f(x)+g(x)\}
x∈Dsupf(x)+x∈Dinfg(x)⩽x∈Dsup{f(x)+g(x)}
证明:
(1)由§1.4第8题可得:
sup
x
∈
D
g
(
x
)
=
−
inf
x
∈
D
{
−
g
(
x
)
}
\sup _{x \in D} g(x)=-\inf _{x \in D} \{-g(x)\}
x∈Dsupg(x)=−x∈Dinf{−g(x)}那么
inf
x
∈
D
f
(
x
)
+
sup
g
(
x
)
=
inf
x
∈
D
f
(
x
)
−
inf
x
∈
D
{
−
g
(
x
)
}
\inf _{x \in D} f(x)+\operatorname{sup}g(x) = \inf _{x \in D} f(x)-\inf _{x \in D} \{-g(x)\}
x∈Dinff(x)+supg(x)=x∈Dinff(x)−x∈Dinf{−g(x)}
⩾
inf
x
∈
D
{
f
(
x
)
−
[
−
g
(
x
)
]
}
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \geqslant \inf _{x\in D}\{f(x)-[-g(x)]\}
⩾x∈Dinf{f(x)−[−g(x)]}
=
inf
x
∈
D
{
f
(
x
)
+
g
(
x
)
}
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\inf _{x\in D}\{f(x)+g(x)\}
=x∈Dinf{f(x)+g(x)}事实上,对于上个式子的不等号:
观察不等式两边有
f
(
x
)
=
f
(
x
)
+
g
(
x
)
+
[
−
g
(
x
)
]
f(x)=f(x)+g(x)+[-g(x)]
f(x)=f(x)+g(x)+[−g(x)]立即有
inf
x
∈
D
f
(
x
)
=
inf
x
∈
D
{
f
(
x
)
+
g
(
x
)
+
[
−
g
(
x
)
]
}
⩾
inf
x
∈
D
{
f
(
x
)
+
g
(
x
)
}
+
inf
x
∈
D
{
−
g
(
x
)
}
\inf _{x\in D}f(x)=\inf _{x\in D}\{f(x)+g(x)+[-g(x)]\} \geqslant \inf _{x\in D}\{f(x)+g(x)\}+\inf _{x\in D}\{-g(x)\}
x∈Dinff(x)=x∈Dinf{f(x)+g(x)+[−g(x)]}⩾x∈Dinf{f(x)+g(x)}+x∈Dinf{−g(x)}再次利用
sup
x
∈
D
g
(
x
)
=
−
inf
x
∈
D
{
−
g
(
x
)
}
\sup _{x \in D} g(x)=-\inf _{x \in D} \{-g(x)\}
x∈Dsupg(x)=−x∈Dinf{−g(x)}整理后即可得到
inf
x
∈
D
{
f
(
x
)
+
g
(
x
)
}
⩽
inf
x
∈
D
f
(
x
)
+
sup
x
∈
D
g
(
x
)
\inf _{x \in D}\{f(x)+g(x)\} \leqslant \inf _{x \in D} f(x)+\sup _{x\in D}g(x)
x∈Dinf{f(x)+g(x)}⩽x∈Dinff(x)+x∈Dsupg(x)证毕.