问题产生
最近生产项目中出现一个问题,业务人员导入大量数据的时候,导入的时间过长,引发了业务的投诉,并提出了优化需求。
问题原因为导入数据起初就不是为大数据导入而开发的,里面涉及到了每一行数据的规则校验,所以拖累了整体的导入效率。
问题解决
这让我想起了早些年开发的大批量导入的一个项目需求,其用到的主要技术即为异步Future,开启多个线程,然后把线程返回的Future暂时存放在一个数组里面,这里由于没有调用get方法,所以主线程并不会阻塞,放完了所有的Future之后,在最后用一个遍历,get出结果。
Executors创建线程,由于没有对线程的等待队列,线程个数加以限制,一不小心就会出现OOM,所以这里用new ThreadPoolExecutor比较保险,以下是Demo代码:
public class FutureDemo {
public static void main(String[] args) {
// 存放异步返回结果的List
List<FutureTask<Integer>> list = new ArrayList<>();
// 线程池
ExecutorService executor = new ThreadPoolExecutor(5,10,10,TimeUnit.SECONDS,new ArrayBlockingQueue<>(5));
// 弄四个线程,其中第一个线程弄成等待三秒
Task task = new Task(10);
FutureTask<Integer> futureTask = new FutureTask<Integer>(task);
executor.submit(futureTask);
list.add(futureTask);
Task task1 = new Task(11);
FutureTask<Integer> futureTask1 = new FutureTask<Integer>(task1);
executor.submit(futureTask1);
list.add(futureTask1);
Task task2 = new Task(12);
FutureTask<Integer> futureTask2 = new FutureTask<Integer>(task2);
executor.submit(futureTask2);
list.add(futureTask2);
Task task3 = new Task(13);
FutureTask<Integer> futureTask3 = new FutureTask<Integer>(task3);
executor.submit(futureTask3);
list.add(futureTask3);
Task task4 = new Task(14);
FutureTask<Integer> futureTask4 = new FutureTask<Integer>(task4);
executor.submit(futureTask4);
list.add(futureTask4);
executor.shutdown();
try {
for(FutureTask<Integer> item:list){
System.out.println( "task运行结果" +item.get());
}
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
System.out.println( "所有任务执行完毕" );
}
}
class Task implements Callable<Integer>{
private int num = 0;
public Task (int num) {
this.num = num;
}
@Override
public Integer call() throws Exception {
System.out.println( "子线程在进行计算,当前num值:" + num );
if(num == 10){
Thread.sleep( 3000 );
}
// 从0加到num-1
int sum = 0 ;
for ( int i= 0 ;i< num ;i++)
sum += i;
return sum;
}
}
Demo运行结果