几种sklearn库直接实现分类算法

机器学习入门——直接调用sklearn实现几种简单算法
刚学习机器学习,希望大佬们勿喷,望指点
几种分类算法针对鸢尾花数据的分析
1. LR线性回归分类算法

# 引入数据集,sklearn包含众多数据集
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
iris = datasets.load_iris()
iris_X = iris.data
# print(iris_X)
print('特征变量的长度', len(iris_X))
'''特征变量的长度 150'''
# 目标值
iris_y = iris.target
print('鸢尾花的目标值', iris_y)
'''鸢尾花的目标值 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2]'''
# 利用train_test_split进行训练集和测试机进行分开,test_size占30%
X_train, X_test, y_train, y_test = train_test_split(iris_X, iris_y, test_size=0.3)
# 我们看到训练数据的特征值分为3类
# print(y_train)

#定义模型
LR = LinearRegression()
LR.fit(X_train,y_train)
LR.get_params()

#预测模型得分
sorce = LR.score(X_test,y_test)
print("此模型得分为%s"%sorce)
'''此模型得分为0.9149861834006362'''
# 预测数据,预测特征值
print(LR.predict(X_test))
'''[ 1.63941449 -0.04656291  1.22803812  1.597067   -0.04296543 -0.1082205
  1.88684854  1.31080879 -0.00333587  1.8289367   1.28993837  1.75344022
  1.09021679 -0.02400242  1.32395518  1.00228831 -0.17123785  1.205144
  0.87926466  0.00947689 -0.06329835  1.52395814  1.15092907 -0.04949313
 -0.04566142  1.00861719  2.14232013  2.00140341  2.03898734 -0.03660288
  1.33849672  2.11454454  2.07733465  1.20349271  1.7931911   1.93649543
  0.22430788  2.23932393 -0.09751398  1.15783423  0.96480882  0.05269551
  1.18696115  0.08604333  1.35280072]'''
# 打印真实特征值
print(y_test)
'''[1 0 1 1 0 0 2 1 0 2 1 2 1 0 1 1 0 1 1 0 0 1 1 0 0 1 2 2 2 0 1 2 2 1 2 2 0
 2 0 1 1 0 1 0 1]'''

``

2. LR逻辑回归分类

# 引入数据集,sklearn包含众多数据集
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
iris = datasets.load_iris()
iris_X = iris.data
# print(iris_X)
print('特征变量的长度', len(iris_X))
'''特征变量的长度 150'''
# 目标值
iris_y = iris.target
print('鸢尾花的目标值'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值