读文献—机器学习应用到网络流量分类综述

我爱读文献

review of machine learning techniques for network traffic classification

Sharma N, Arora B. Review of Machine Learning Techniques for Network Traffic Classification[J]. Available at SSRN 3747605, 2020.

传统的网络流量分类 可以分为四种类型 :基于端口的,基于载荷的,统计的以及行为的
在这里插入图片描述
对于基于端口的方式(对包头进行检查)来说主要有以下两种缺点:

  1. 某些应用程序可以将自身设置为知名端口来混淆自己
  2. 由于当前应用程序的多态性,通常无法理解确切的端口号

对于基于载荷的分类方式(不局限于对报头进行检查,而且与载荷内容进行对比)有以下两种缺陷:

  1. 当出现大量加密流量未分类的情况时,增加了误报率
  2. 检查有效载荷内容违反了用户隐私策略,计算成本增加

对于基于统计特性(对于包长度、流持续时间、包间隔等统计属性区分是否为正常流量)其问题为不能满足实时流量增长的要求

对于基于行为分析的方式(通过分析终端或者目标主机接受到的网络流量模式来检查整个网络流量【通过检查主机数量和端口数量来识别特定的应用程序】)来说这种方法只考虑到了终端或者是客户端的行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值