概率论笔记(一)

概率论学习笔记(一)

只供本人复习使用

联合概率与边缘概率的关系

联合概率
P ( X = a , Y = b ) P(X=a, Y=b) P(X=a,Y=b) = P ( X = a ∣ Y = b ) P ( Y = b ) = P ( Y = b ∣ X = a ) P ( X = a ) P(X=a|Y=b)P(Y=b) = P(Y=b|X=a)P(X=a) P(X=aY=b)P(Y=b)=P(Y=bX=a)P(X=a)
边缘概率
P ( X = a ) = ∑ Y P ( X = a , Y = b ) = ∑ Y P ( X = a ∣ Y = b ) P ( Y = b ) = ∑ Y P ( Y = b ∣ X = a ) P ( X = a ) P(X=a) = \displaystyle\sum_{Y}^{ } P(X=a, Y=b)=\displaystyle\sum_{Y}^{} P(X=a|Y=b)P(Y=b) = \displaystyle\sum_{Y}^{} P(Y=b|X=a)P(X=a) P(X=a)=YP(X=a,Y=b)=YP(X=aY=b)P(Y=b)=YP(Y=bX=a)P(X=a)
P ( Y = b ) = ∑ X P ( X = a , Y = b ) = ∑ X P ( X = a ∣ Y = b ) P ( Y = b ) = ∑ X P ( Y = b ∣ X = a ) P ( X = a ) P(Y=b) = \displaystyle\sum_{X}^{ } P(X=a, Y=b)=\displaystyle\sum_{X}^{} P(X=a|Y=b)P(Y=b) = \displaystyle\sum_{X}^{} P(Y=b|X=a)P(X=a) P(Y=b)=XP(X=a,Y=b)=XP(X=aY=b)P(Y=b)=XP(Y=bX=a)P(X=a)
条件概率有如下等式
∑ X P ( X = a ∣ Y = b ) = 1 \displaystyle\sum_{X}^{ } P(X=a|Y=b)=1 XP(X=aY=b)=1
三个随机变量及以上的情况只需要把其中的两个或多个看成一个整体处理即可

贝叶斯公式

P ( X = a ∣ Y = b ) = P ( Y = b ∣ X = a ) P ( X = a ) P ( Y = b ) P(X=a|Y=b) = \frac{P(Y=b | X=a)P(X=a)} {P(Y=b)} P(X=aY=b)=P(Y=b)P(Y=bX=a)P(X=a)

其中的 P ( X = a ) P(X=a) P(X=a)为先验概率, P ( X = a ∣ Y = b ) P(X=a|Y=b) P(X=aY=b)为后验概率

即 已知所有的 P ( 结 果 ∣ 原 因 ) 和 P ( 结 果 ) P(结果|原因)和P(结果) P()P()

P ( 原 因 ∣ 结 果 ) P(原因|结果) P()

随机变量的独立性

随机变量的独立性有很多描述方式,这里只举出最常用的集中方式.
1. 1. 1. 条件概率与条件无关
P ( X = a ∣ Y = b ) = P ( X = a ) P(X=a|Y=b) = P(X=a) P(X=aY=b)=P(X=a)
2. P ( X = a , Y = b ) = P ( X = a ) P ( Y = b ) 2. P(X=a, Y=b) = P(X=a)P(Y=b) 2.P(X=a,Y=b)=P(X=a)P(Y=b)
并且 P ( X = a , Y = b ) = G ( X ) F ( Y ) P(X=a, Y=b)=G(X)F(Y) P(X=a,Y=b)=G(X)F(Y)
可以分解为两个一元函数的乘积

联合概率的拆分

P ( X = a , Y = b , Z = c ) = P ( X = a ∣ Y = b , Z = c ) P ( Y = b ∣ Z = c ) P ( Z = c ) P(X=a,Y=b,Z=c)=P(X=a|Y=b,Z=c)P(Y=b|Z=c)P(Z=c) P(X=a,Y=b,Z=c)=P(X=aY=b,Z=c)P(Y=bZ=c)P(Z=c)
X , Y , Z X,Y,Z X,Y,Z相互独立时可以简化为 P ( X = a ) P ( Y = b ) P ( Z = c ) P(X=a)P(Y=b)P(Z=c) P(X=a)P(Y=b)P(Z=c)

二项分布

B ( n , p ) = P ( X = k ) = C n k p k ( 1 − p ) n − k B(n,p)=P(X=k)=C_n^{k}p^k(1-p)^{n-k} B(n,p)=P(X=k)=Cnkpk(1p)nk

以下是各种类型的二项分布
在这里插入图片描述

排列

A n k = n ! ( n − k ) ! A_n^{k}=\frac {n!}{(n-k)!} Ank=(nk)!n!

组合

C n k = n ! k ! ( n − k ) ! C_n^{k} = \frac {n!}{k!(n-k)!} Cnk=k!(nk)!n!

期望

E [ X ] = ∑ k k P ( X = k ) E[X]=\displaystyle\sum_{k}kP(X=k) E[X]=kkP(X=k)

E [ g ( x ) ] = ∑ k g ( k ) P ( X = k ) E[g(x)] =\displaystyle\sum_{k}g(k)P(X=k) E[g(x)]=kg(k)P(X=k)

  1. 概率可以看做面积
  2. 随机变量可以看做高度
  3. 期望可以看做体积

期望有如下性质 :
1.
在这里插入图片描述

  1. E [ X + Y ] = E [ X ] + E [ Y ) E[X+Y] = E[X]+E[Y) E[X+Y]=E[X]+E[Y)

无论 X 和 Y X和Y XY是否是独立的

如果 X 和 Y X 和 Y XY相互独立则 E [ X Y ] = E [ X ] E [ Y ] E[XY]=E[X]E[Y] E[XY]=E[X]E[Y]

  1. 二项分布的期望是 E [ X ] = n p E[X] = np E[X]=np

方差

E [ X ] = u E[X] = u E[X]=u

V a r [ X ] = E [ ( X − u ) 2 ] = ∑ k ( X − u ) 2 P ( X = k ) Var[X] =E[ (X-u)^2 ]=\displaystyle\sum_{k}(X-u)^2P(X=k) Var[X]=E[(Xu)2]=k(Xu)2P(X=k)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

方差与期望的关系

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

大数定理

独立同分布

在这里插入图片描述
满足以上两个条件的随机变量为独立同分布

在这里插入图片描述

平均值 Z = X 1 + X 2 + . . . + X n n Z =\frac {X_1 +X_2 + ...+X_n} {n} Z=nX1+X2+...+Xn

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

import random as rd
import matplotlib.pyplot as plt

N = 10000
X = []
aver = []
tmp = []
for i in range(1, N+1):
    X.append(i)
    tmp.append(rd.randint(1, 10))
    aver.append(sum(tmp)/i)
plt.plot(X, aver)
plt.show()    

在这里插入图片描述

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值