一阶方程换元法(lesson 4)

直接换元

对于 y ′ = p ( x ) y + q ( x ) y n y'=p(x)y+q(x)y^n y=p(x)y+q(x)yn类型的微分方程可以使用直接换元

等式两侧同时乘以 1 y n \frac {1} {y^n} yn1

y ′ y n = p ( x ) y 1 − n + q ( x ) \frac {y'}{y^n}=p(x)y^{1-n}+q(x) yny=p(x)y1n+q(x)

v = y 1 − n v=y^{1-n} v=y1n

v ′ = ( 1 − n ) y ′ y n v'=(1-n)\frac {y'}{y^n} v=(1n)yny

v ′ 1 − n = p ( x ) v + q ( x ) \frac {v'}{1-n}=p(x)v+q(x) 1nv=p(x)v+q(x)

v ′ − ( 1 − n ) p ( x ) v = ( 1 − n ) q ( x ) v'-(1-n)p(x)v=(1-n)q(x) v(1n)p(x)v=(1n)q(x)(标准一阶线性形式)

u ( x ) = e ∫ ( n − 1 ) p ( x ) d x u(x) =e^{\int_{}^{} (n-1)p(x)dx} u(x)=e(n1)p(x)dx

v = ∫ u ( x ) ( 1 − n ) q ( x ) d x u ( x ) v=\frac {\int_{}^{}u(x)(1-n)q(x)dx}{u(x)} v=u(x)u(x)(1n)q(x)dx

y = v 1 1 − n y=v^{\frac{1}{1-n}} y=v1n1

逆换元

对于 y ′ = F ( y x ) y'=F(\frac{y}{x}) y=F(xy)类型的齐次微分方程可以使用直接换元

y ′ = F ( y x ) y'=F(\frac {y}{x}) y=F(xy)

z = y x z=\frac{y}{x} z=xy

y = x z y=xz y=xz

y ′ = z + x z ′ y'=z+xz' y=z+xz

z + x z ′ = F ( y x ) z+xz'=F(\frac{y}{x}) z+xz=F(xy)

x d z d x = F ( z ) − z x\frac{dz}{dx}=F(z)-z xdxdz=F(z)z

d z F ( z ) − z = d x x \frac{dz}{F(z)-z}=\frac{dx}{x} F(z)zdz=xdx

l n x = ∫ d z F ( z ) − z lnx=\int_{}^{}\frac{dz}{F(z)-z} lnx=F(z)zdz

example

y ′ = x + y x − y y'=\frac{x+y}{x-y} y=xyx+y

y ′ = 1 + y / x 1 − y / x = 1 + z 1 − z = F ( z ) y'=\frac{1+y/x}{1-y/x}=\frac{1+z}{1-z}=F(z) y=1y/x1+y/x=1z1+z=F(z)

l n x = ∫ d z 1 + z 1 − z − z lnx=\int_{}^{}\frac{dz}{\frac{1+z}{1-z}-z} lnx=1z1+zzdz

l n x = ∫ 1 − z 1 + z 2 d z lnx=\int_{}^{}\frac{1-z}{1+z^2}dz lnx=1+z21zdz

l n x = t a n − 1 z − l n 1 + z 2 + C lnx=tan^{-1}z-ln\sqrt{1+z^2}+C lnx=tan1zln1+z2 +C

l n x 2 + y 2 = t a n − 1 y x + C ln\sqrt{x^2+y^2}=tan^{-1}\frac{y}{x}+C lnx2+y2 =tan1xy+C(直角坐标方程)

ρ = C e θ \rho=Ce^{\theta} ρ=Ceθ(极坐标方程)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值