一阶线性常微分方程(lesson 3)

一阶线性常微分方程

标准形式 : y ′ + p ( x ) y = q ( x ) y'+p(x)y=q(x) y+p(x)y=q(x)

求解方法:

0. 将微分方程化为标准形式
1. 寻找一个积分因子 u ( x ) u(x) u(x), 等号两侧同时乘 u ( x ) u(x) u(x)

u ( x ) y ′ + u ( x ) p ( x ) y = u ( x ) q ( x ) u(x)y'+u(x)p(x)y=u(x)q(x) u(x)y+u(x)p(x)y=u(x)q(x)

u ( x ) y ′ + u ( x ) p ( x ) y = ( u ( x ) y ) ′ u(x)y'+u(x)p(x)y = (u(x)y)' u(x)y+u(x)p(x)y=(u(x)y)

u ( x ) ′ y = u ( x ) p ( x ) y u(x)'y = u(x)p(x)y u(x)y=u(x)p(x)y

u ( x ) ′ = u ( x ) p ( x ) u(x)' = u(x)p(x) u(x)=u(x)p(x)

d u ( x ) d x = u ( x ) p ( x ) \frac {du(x)}{dx} =u(x)p(x) dxdu(x)=u(x)p(x)

d u ( x ) u ( x ) = p ( x ) d x \frac {du(x)}{u(x)}=p(x)dx u(x)du(x)=p(x)dx

l n u ( x ) = ∫ p ( x ) d x lnu(x)=\int_{}{}p(x)dx lnu(x)=p(x)dx

u ( x ) = e ∫ p ( x ) d x u(x) = e^{\int_{}{}p(x)dx} u(x)=ep(x)dx

只需要取众多 u ( x ) u(x) u(x)中的一个就可以

  1. 方程变为:

u ( x ) y ′ + u ( x ) p ( x ) y = u ( x ) q ( x ) u(x)y'+u(x)p(x)y=u(x)q(x) u(x)y+u(x)p(x)y=u(x)q(x)

( u ( x ) y ) ′ = u ( x ) q ( x ) (u(x)y)'=u(x)q(x) (u(x)y)=u(x)q(x)

  1. 两侧同时积分:

u ( x ) y = ∫ u ( x ) q ( x ) d x u(x)y=\int_{}{}u(x)q(x)dx u(x)y=u(x)q(x)dx

y = ∫ u ( x ) q ( x ) d x u ( x ) y=\frac {\int_{}{}u(x)q(x)dx}{u(x)} y=u(x)u(x)q(x)dx

first example:

x y ′ − y = x 3 xy' -y = x^3 xyy=x3

y ′ − 1 x y = x 2 y'-\frac {1}{x}y=x^2 yx1y=x2

u ( x ) = e ∫ − 1 x d x = − 1 x u(x) = e^{\int_{}{}-\frac {1}{x}dx}=-\frac {1}{x} u(x)=ex1dx=x1

− 1 x y = ∫ − 1 x x 2 d x = ∫ − x d x = − x 2 2 + C -\frac {1}{x}y =\int_{}{}-\frac {1}{x}x^2dx=\int_{}{}-xdx=-\frac {x^2}{2}+C x1y=x1x2dx=xdx=2x2+C

y = x 3 2 + C x y =\frac {x^3}{2}+Cx y=2x3+Cx

second example

( 1 + c o s x ) y ′ − ( s i n x ) y = 2 x (1+cosx)y'-(sinx)y=2x (1+cosx)y(sinx)y=2x

y ′ − s i n x 1 + c o s x y = 2 x 1 + c o s x y'-\frac {sinx}{1+cosx}y=\frac {2x}{1+cosx} y1+cosxsinxy=1+cosx2x

u ( x ) = e ∫ − s i n x 1 + c o s x d x = e l n ( 1 + c o s x ) = 1 + c o s x u(x) =e^{\int_{}{} -\frac {sinx}{1+cosx}dx}=e^{ln(1+cosx)}=1+cosx u(x)=e1+cosxsinxdx=eln(1+cosx)=1+cosx

y = ∫ ( 1 + c o s x ) 2 x 1 + c o s x d x 1 + c o s x = x 2 + C 1 + c o s x y=\frac {\int_{}{}(1+cosx)\frac {2x}{1+cosx}dx}{1+cosx}=\frac {x^2+C}{1+cosx} y=1+cosx(1+cosx)1+cosx2xdx=1+cosxx2+C

给定初值 y ( 0 ) = 1 y(0)=1 y(0)=1

0 2 + C 1 + c o s 0 = 1 → C = 2 \frac {0^2+C}{1+cos0}=1\to C=2 1+cos002+C=1C=2

y = x 2 + 2 1 + c o s x y=\frac {x^2+2}{1+cosx} y=1+cosxx2+2

application

传递 − - 传导modal

d T d t = k ( T e ( t ) − T ( t ) ) ( k > 0 ) \frac {dT}{dt}=k(T_e(t)-T(t)) (k>0) dtdT=k(Te(t)T(t))(k>0)

d T d t + k T ( t ) = k T e ( t ) \frac {dT}{dt}+kT(t)=kT_e(t) dtdT+kT(t)=kTe(t)

u ( t ) = e ∫ k d t = e k t u(t) = e^{\int_{}{}kdt}=e^{kt} u(t)=ekdt=ekt

T ( t ) = ∫ u ( t ) k T e ( t ) d t u ( t ) = ∫ e k t k T e ( t ) d t e k t T(t)=\frac {\int_{}{}u(t)kT_e(t)dt}{u(t)}=\frac {\int_{}{}e^{kt}kT_e(t)dt}{e^{kt}} T(t)=u(t)u(t)kTe(t)dt=ektektkTe(t)dt

给定初值 T ( 0 ) = T 0 T(0)=T_0 T(0)=T0

T ( t ) = e − k t ∫ 0 t k e k t ∗ T e ( t ∗ ) d t ∗ + C e − k t T(t)=e^{-kt}\int_{0}^{t}ke^{kt^*}T_e(t^*)dt^*+Ce^{-kt} T(t)=ekt0tkektTe(t)dt+Cekt

C = T 0 C=T_0 C=T0

t → ∞ 时 C e − k t = 0 t\to\infty时Ce^{-kt} =0 tCekt=0(暂态解)

t → ∞ 时 e − k t ∫ 0 t k e k t ∗ T e ( t ∗ ) d t ∗ ≠ 0 t\to\infty时e^{-kt}\int_{0}^{t}ke^{kt^*}T_e(t^*)dt^*\ne0 tekt0tkektTe(t)dt̸=0(稳态解)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值