《深度学习》学习笔记(七)

本篇博文主要介绍AUTO-ENCODER。

self-supervised learning Framework

在这里插入图片描述

Basic Idea of Auto-encoder

在这里插入图片描述
old feature通过NN Encoder高维变为低维,new feature for downstream tasks。低维通过NN Decoder变为高维。高维变为低维又称为Dimension Reduction。

Why Auto-encoder?

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
也可以把BERT看作是一个De-noising Auto-encoder
在这里插入图片描述

Feature Disentanglement

在这里插入图片描述
在这里插入图片描述
这个技术就是说可以把本来输入的audio分成两部分,前面部分维度表示content information,后面部分维度表示speaker information。
在这里插入图片描述
在这里插入图片描述
部分维度表示content,部分维度表示speaker。
在这里插入图片描述
在这里插入图片描述

Discrete Latent Representation

在这里插入图片描述
在这里插入图片描述
representation也可以是text,但是train的时候是行不通的。
在这里插入图片描述
加上GAN之后是ok的,其实就是cycle GAN。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
异常检测的难点在于收集数据,其中异常点比较难收集到。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
异常检测的技术有很多,前面简单介绍了用auto-encoder来做异常检测。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值