本篇博文主要介绍AUTO-ENCODER。
文章目录
self-supervised learning Framework
Basic Idea of Auto-encoder
old feature通过NN Encoder高维变为低维,new feature for downstream tasks。低维通过NN Decoder变为高维。高维变为低维又称为Dimension Reduction。
Why Auto-encoder?
也可以把BERT看作是一个De-noising Auto-encoder
Feature Disentanglement
这个技术就是说可以把本来输入的audio分成两部分,前面部分维度表示content information,后面部分维度表示speaker information。
部分维度表示content,部分维度表示speaker。
Discrete Latent Representation
representation也可以是text,但是train的时候是行不通的。
加上GAN之后是ok的,其实就是cycle GAN。
异常检测的难点在于收集数据,其中异常点比较难收集到。
异常检测的技术有很多,前面简单介绍了用auto-encoder来做异常检测。