编程题
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法?
分析
对于n级台阶,第一步的跳法有n种:跳1级、跳2级、跳3级…跳n级
跳1级,剩下的n-1级的跳法是f(n-1);
跳2级,剩下的n-2级的跳法是f(n-2);
跳3级,剩下的n-3级的跳法是f(n-3);
…
跳n-1级,剩下的1级的跳法是f(1);
跳n级,剩下的0级的跳法是f(0)=0;
所以f(n) = f(n-1)+f(n-2)+…+f(1)
而f(n-1) = f(n-2)+f(n-3)+…+f(1)…
以上两个式子相减,得最终:f(n) = 2 * f(n-1)
代码
public class Solution {
public int JumpFloorII(int target)
{
if(target <= 0)
return 0;
if(target == 1)
return 1;
if(target >= 2)
return 2*JumpFloorII(target-1)
}
更简便的方法
一行代码的事,1<<(target-1)
f(n)=f(n-1)+f(n-2)+…f(1)
f(n-1)=f(n-2)+f(n-3)+…f(1)
则f(n)=2( f(n-2)+f(n-3)+…f(1) )=2*f(n-1)
f(1)=1 则f(n)=2*f(n-1)=2*2*f(n-2)=2*2*2*f(n-3)...=2^(n-1)*f(1)
= f(n) = 2^(n-1)