变态跳台阶问题:一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法?

36 篇文章 1 订阅
14 篇文章 0 订阅

编程题

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法?

分析

对于n级台阶,第一步的跳法有n种:跳1级、跳2级、跳3级…跳n级
跳1级,剩下的n-1级的跳法是f(n-1);
跳2级,剩下的n-2级的跳法是f(n-2);
跳3级,剩下的n-3级的跳法是f(n-3);

跳n-1级,剩下的1级的跳法是f(1);
跳n级,剩下的0级的跳法是f(0)=0;

所以f(n) = f(n-1)+f(n-2)+…+f(1)
而f(n-1) = f(n-2)+f(n-3)+…+f(1)…

以上两个式子相减,得最终:f(n) = 2 * f(n-1)

代码

public class Solution {
    public int JumpFloorII(int target) 
    {
    	if(target <= 0)
    		return 0;
    	if(target == 1)
    		return 1;
    	if(target >= 2)
    		return 2*JumpFloorII(target-1)
    }

更简便的方法

一行代码的事,1<<(target-1)
f(n)=f(n-1)+f(n-2)+…f(1)
f(n-1)=f(n-2)+f(n-3)+…f(1)
则f(n)=2( f(n-2)+f(n-3)+…f(1) )=2*f(n-1)

f(1)=1 则f(n)=2*f(n-1)=2*2*f(n-2)=2*2*2*f(n-3)...=2^(n-1)*f(1)= f(n) = 2^(n-1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值