用反证法证明辗转相除法

辗转相除法是一种快速求两个数最大公约数的一种算法,其核心的思想是 gcd(a,b) = gcd(b, a mod b)。至于为什么这样,本文就给出证明过程。

辗转相除法定义

设 a, b 为正整数,不妨令 a >= b,gcd(m, n)是求m, n的最大公约数,那么以下算法:

  1. 令 c = a mod b,若 c = 0,则b是最大公约数;
  2. 若 c ≠ 0,求 gcd(b, a mod b),回到第1步

流程图如下所示:

Created with Raphaël 2.2.0 开始 求 gcd(a, b) 令 c = a mod b c = 0? 最大公约数为 b 结束 a ← b, b ← c (注1*) yes no

注1*:此操作的含义是将b和c的值作为新的a和b的值再代入gcd(a, b)。举例来说,假设输入a = 27, b = 18,则所要求的为 gcd(27,18)。先计算 c = 27 mod 18 = 9,此时 c ≠ 0,那么开始第二次循环,此时 a = b = 18, b = c = 9,所以 gcd(27, 18) 变为 gcd(18, 9)。

分析

辗转相除法的核心要求是证明 gcd(a, b) = gcd(b, a mod b) ,其中 a , b a, b a,b 是正整数,函数 gcd 用于求 a, b 的最大公约数。设正整数 g = gcd(a, b),那么就是要证明gcd(b, a mod b)=g。

证明

设 r = a mod b,则 a = k * a + r,其中 k 为整数。设 g = gcd(a, b),那么:
① b mod g = 0,乘以 k 后可得:(k1 * b) mod g = 0;
② a mod g = 0,即 (k * b + r) mod g = 0;
联合①,②式可得 r mod g = 0,也就是说 r 也是 g 的整数倍,
所以 a,b,r 可以表示成 k1 * g, k2 * g 和 k3 * g,其中 k1 >= k2 > k3
因此,gcd(b, a mod b) = gcd(b, r) = gcd(k2 * g, k3 * g),所以 g 是其公约数。

但是g是不是最大公约数还要证明,这里使用反证法,即假设 g 不是最大的公约数,那么存在 G = gcd(b, a mod b) G > g。G 是 b 和 a mod b 的公约数,而 a = k * b + (a mod b),所以 G 也是 a 的公约数,即 G = gcd(a, b),这与 g = gcd(a, b) 矛盾,所以 g 是 gcd(b, a mod b) 的最大公约数。

证毕。

小结

本文对辗转相除法利用反证法进行了证明,同时笔者还发现,还有一种通过两边范围相夹的方法来证明,参见:辗转相除法求得最大公约数的证明。基本证明方法见附录的总结。

附:另一种证明方法

设 g1 = gcd(a, b) 和 g2 = gcd(b, a mod b),其中 a, b, c 均为正整数,那么:

  • g1 ≤ \leq g2
    因为g1是a, b的公约数,所以 g1 也是 a mod b 的约数(参见本文前面的结论),所以 g1 是 b, c 的公约数,而 g2 是b, a mod b 的最大公约数,所以 g1 ≤ \leq g2。
  • g2 ≤ \leq g1
    证明方法类似,可以先证明 g2 是 a, b 的公约数,而 g1 是a, b 的最大公约数,所以g2 ≤ \leq g1。

基于1和2可得 g1 = g2,即 gcd(a, b) = gcd(b, a mod b),请毕。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值