这是微软的一道经典的试题,大约是2008年左右的时候出的。这个题目虽然已经过了十多年了,但是仍然是一道非常经典的试题,值时不时拿出来看一看。
问题描述
五个海盗抢到了100颗宝石。他们决定按以下的规则进行分配:
1)首先,抽签决定自己的顺序 1、2、3、4、5,然后,由1号开始提出分配方案。
2)然后,方案提出后让所有人进行表决,当且仅当有超过半数的人同意时,方案通过进行分配,否则将被扔进大海喂鲨鱼。
3)当1号被喂鲨鱼后,2号继续提出方案,规则同上,直接方案通过。
题目还有以下几个条件:
条件1:每个海盗都足够聪明,能够理智地做出判断,使自己的利益达到最大化;
条件2:每个海盗的决策依据都是利益大于友情。
问题:如果你是第一个海盗,应该提出怎样的分配方案才能使自己的收益最大化 ?
分析
这是一个经典的倒推法解决的问题,先通过假设前面人都喂鲨鱼,然后再向前反推。
解答
根据一般的经验,参与分配的人越少,能够分配到的自然越多。所以,直观的感觉,1号无论怎么分,也会被其他人反对而喂鲨鱼,同理2号,3号,4号也是如此,最后剩下5号得到全部的100颗宝石。
5号的分配方案
编号 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
数量 | - | - | - | - | 100 |
投票 | - | - | - | - | O |
然后,考虑到条件1,当4号在分配的时候无论怎样分配,只要5号不同意,就达不到超过半数这个条件,因此4号是非常被动的,即使利用条件2,将100颗宝石全给5号可以活下来,但是利益上的收益完全为0。
4号的分配方案
编号 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
数量 | - | - | - | 0 | 100 |
投票 | - | - | - | O | O |
所以,我们如果再往回推的话,可以发现3号在分配的时候,利用条件1,能够想明白4号的处境,因此只要拉拢4号,即可实现超过半数而实现分配。
3号的分配方案
- | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
数量 | - | - | 99 | 1 | 0 |
投票 | - | - | O | O | X |
再继续向前推2号。根据上面的结果,2号可以通过追回宝石的方式,拉拢4号和5号,提出以下分配方案。
2号的分配方案
- | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
数量 | - | 97 | 0 | 2 | 1 |
投票 | - | O | X | O | O |
最后,让我们来看1号的分配方案。1号这时候只要拉拢2个人即可达到超过半数,显然拉拢3号和5号是经济的,因此提出以下的分配方案。
1号的分配方案
- | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
数量 | 97 | 0 | 1 | 0 | 2 |
投票 | O | X | O | X | O |
所以,最终的分配方案是 97,0,1,0,2。
总结与启示
结论与我们第一感觉截然相反。看似最危险的1号居然反而是最大的获利者,反之,看似最安全的5号却只获得了蝇头小利。这其实也反映出了一些生活的哲理。最先出手的人,往往风险很大,但是却会有最好的机会,只要能够牢牢把把控全局,就可以以先发制人的优势实现收益最大化。这不正是现实社会的真实写照么,生活中的很多成功人士往往胆大勇猛的人,既然身处险境,周围危机四伏,也往往能够勇于出手,从而成为先手掌握主动形成优势,实现自己谋取最大化的利益。反之,一味地追求安全闲逸,就会让自己处于非常被动的境地。就比如说5号,看起来100%安全,不会有任何的威胁,但是很难有机会上手,最终只落得分一杯羹也要别人脸色境地。其实在我们的生活中,大部分人都是这样的写照,他们寻求安稳,小遇则安,也正因此才只是普通人。
除了以上的观点,另一方面,我们还应该看到问题的答案是非常理想化的,是完全建立在绝对的信息透明和公平有效的体制之上的,所以1号才可以如此“胆大妄为”地提取这样极端的分配方案。真实的世界要比这复杂地多,不仅不存在以上的两条绝对的条件之上,还要多出很多复杂的规则和条件。所以,在解决真实世界的问题的时候,我们在分析问题的时候,需要付出更多的努力,考虑更多的可能,从而做出对自己最有利的决策。