Excel电商女装评价分析

本文基于某电商女装评论数据,分析了消费者年龄分布、商品类型与星级评价的关系。结果显示,30-49岁消费者是主要客户,店铺评价以4-5星为主,上装类商品收到的评价最多,而Bottoms类服装差评率最低。14款爆款商品中,Dresses和Tops类占比高,且推荐率超过75%。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

电商女装评价分析
数据来源:https://www.kesci.com/home/dataset/5aab7e09afaabd5e93e4df30/project

项目背景
基于某电商女性服装评论数据集,从“人—货—场(店)”三个角度进行分析,以期得到不同年龄段的消费者评论的情况,不同类型服装被评论的情况,整体店铺的好评推荐情况

数据概况
数据集共包含23486行和10个特征变量。
在这里插入图片描述

根据特征变量的特性,我们将其分为4类。

  1. 消费者信息类
    Age:消费者的年龄
  2. 商品特征类
    Clothing ID:服装编号,具有唯一性
    Division Name:一级分类。分为General(常规服饰)、General Petite(小个子服饰)、Intimate(私人贴身服饰)。
    Department Name:二级分类。例如Tops(上装)、Bottoms(下装)、Dresses(裙装)等
    Class Name:三级分类。例如Pants(裤子)、Skirts(半身裙)、Jeans(牛仔裤)等,它们都属于Bottoms(下装)类。
  3. 评论信息类
    Title:评论的标题
    Review Text:评论的内容
    Rating:星级,1~5级,级别越高表示越满意
    Recommended IND:是否推荐,1表示推荐,0表示不推荐
  4. 其他购买者对于评论的反馈
    Positive Feedback Count:积极的反馈计数,可以理解为有多少人“觉得评论对自己有用”

数据处理
Title、Review Text、Division Name、Department Name、Class Name包含缺失值。
Title、Review Text缺失数据较多,但是Rating和Recommended IND并没有缺失值。这部分消费者只是没有写文字性的评论,Rating和Recommended IND两项可以代表他们对商品的态度,所以保留Title、Review Text的缺失数据。
Division Name、Department Name、Class Name均有14项缺失值,数据量极少,所以选择删除这14条数据。
为了方便分析,增加一列“rating rank”(L列),计算公式为lookup(F列,{0,3,4},{“negative”,” neutral”,” positive”}) F列为rating列。
Rati

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值