信息增益、经验熵及经验条件熵的计算

信息增益、经验熵及经验条件熵的计算

摘自李航的《统计学习方法》

在这里插入图片描述
在这里插入图片描述

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
初识⼈⼯智能--决策树算法 机器学习中分类和预测算法的评估: * 准确率 * 速度 * 强壮⾏ * 可规模性 * 可解释性 1. 什么是决策树/判定树(decision tree)? 判定树是⼀个类似于流程图的树结构:其中,每个内部结点表⽰在⼀个属性上的测试,每个分⽀代表⼀个属性输出,⽽每个树叶结点代表类 或类分布。树的最顶层是根结点。 2. 机器学习中分类⽅法中的算法 朴素贝叶斯(Naive Bayes, NB) Logistic回归(Logistic Regression, LR) 决策树(Decision Tree, DT) –>本⽂主要讲述决策树 ⽀持向量机(Support Vector Machine, SVM) 3. 构造决策树的基本算法 分⽀ 根结点 结点 树叶 3.1 (entropy)概念: 信息和抽象,如何度量? 1948年,⾹农提出了 "信息熵(entropy)"的概念 ⼀条信息的信息量⼤⼩和它的不确定性有直接的关系,要搞清楚⼀件⾮常⾮常不确定的事情,或者是我们⼀⽆所知的事情,需要了解⼤量信 息==>信息量的度量就等于不确定性的多少例⼦:猜世界杯冠军,假如⼀⽆所知,猜多少次? 每个队夺冠的⼏率不是相等的 ⽐特(bit)来衡量信息的多少 变量的不确定性越⼤,也就越⼤ 3.1 决策树归纳算法 (ID3) 1970-1980, J.Ross. Quinlan, ID3算法 选择属性判断结点 信息获取量(Information Gain):Gain(A) = Info(D) - Infor_A(D) 通过A来作为节点分类获取了多少信息 计算过程:先单独计算Info(D),以⽬标函数为计算基点,总实例数为14,其中no的实例数为5,yes的实例数为9.通过信息熵公式计算,可 得: 再计算包含age属性时的Info_age_(D),其中age可以划分为三个阶段:youth:占实例总数的5/14,middle_aged占4/14,senior占 5/14,继续通过信息熵公式计算,得到Info_age_(D),再通过信息获得量公式计算出最后的结果。 类似,Gain(income) = 0.029, Gain(student) = 0.151, Gain(credit_rating)=0.048 所以,选择age作为第⼀个根节点(取⼤的) 划分好跟节点后,排除已经称为节点的属性,继续通过该⽅法,可以继续划分结点。若出现划分好的表格中的⽬标函数为同⼀类时(eg: yes),便不需要继续划分。 重复以上步骤。。。 算法: * 树以代表训练样本的单个结点开始(步骤1)。 * 如果样本都在同⼀个类,则该结点成为树叶,并⽤该类标号(步骤2 和3)。 * 否则,算法使⽤称为信息增益的基于的度量作为启发信息,选择能够最好地将样本分类的属性(步骤6)。该属性成为该结点的"测试"或"判定"属性(步骤7 )。在算法的该版本中, * 所有的属性都是分类的,即离散值。连续属性必须离散化。 * 对测试属性的每个已知的值,创建⼀个分枝,并据此划分样本(步骤8-10)。 * 算法使⽤同样的过程,递归地形成每个划分上的样本判定树。⼀旦⼀个属性出现在⼀个结点上,就不必该结点的任何后代上考虑它(步骤13)。 * 递归划分步骤仅当下列条件之⼀成⽴停⽌: * (a) 给定结点的所有样本属于同⼀类(步骤2 和3)。 * (b) 没有剩余属性可以⽤来进⼀步划分样本(步骤4)。在此情况下,使⽤多数表决(步骤5)。 * 这涉及将给定的结点转换成树叶,并⽤样本中的多数所在的类标记它。替换地,可以存放结 * 点样本的类分布。 * (c) 分枝 * test_attribute = a i 没有样本(步骤11)。在这种情况下,以 samples 中的多数类 * 创建⼀个树叶(步骤12) 3.1 其他算法: C4.5(Quinlan):它能够处理连续型属性或离散型属性的数据;能够处理具有缺失值的属性数据;使⽤信息增益率⽽不是信息增益作为决策树 的属性选择标准;对⽣成枝剪枝,降低过拟合。 如下为决策树算法框架: C4.5中⽤到的⼏个公式: <1> 训练集的信息熵 其中 m代表分类数,pi为数据集中每个类别所占样本总数的⽐例。 <2> 划分信息熵—-假设选择属性A划分数据集S,计算属性A对集合S的划分信息熵值 case 1:A为离散类型,有k个不同取值,根据属性的k个不同取值将S划分为k各⼦集{s1 s2 …sk},则属性A划分S的划分信息熵为:(其中 "Si" "S" 表⽰包含的样本个数) case 2: A为连续型数据,则按属性A的取值递增排序,将每对相邻值的中点看作可能的分裂点,对每个可能的分裂点,计算: 其中,SL和SR分别对应于该分裂点划分的左右两部分⼦集,选择En
⼤数据分析之分类算法 数据分析之决策树ID3算法 什么是分类算法? 分类算法跟之前的聚类都是让不同对象个体划分到不同的组中的。但是分类不同之处在于类别在运算之前就已经是确定的。 分类是根据训练数据集合,结合某种分类算法,⽐如这篇讲的ID3算法来⽣成最终的分类规则,这样当提供⼀个对象的时候我们可以根据它 们的特征将其划分到某个分组中。 决策树ID3算法是分类中的经典算法,决策树的每⼀层节点依照某⼀确定程度⽐较⾼的属性向下分⼦节点,每个⼦节点在根据其他确定程度 相对较⾼的属性进⾏划分,直到 ⽣成⼀个能完美分类训练样例的决策树或者满⾜某个分类终⽌条件为⽌。 术语定义: ⾃信息量:设信源X发出a的概率p(a),在收到符号a之前,收信者对a的不确定性定义为a的⾃信息量I(a)=-logp(a)。 信息熵:⾃信息量只能反映符号的不确定性,⽽信息熵⽤来度量整个信源整体的不确定性,定义为:H(X)= 求和(p(ai) I(ai)) 条件熵:设信源为X,收信者收到信息Y,⽤条件熵H(X"Y)来描述收信者收到Y后X的不确定性的估计。 平均互信息量:⽤平均互信息量来表⽰信息Y所能提供的关于X的信息量的⼤⼩。 互信息量I(X"Y)=H(X)-H(X"Y) 下边的ID3算法就是⽤到了每⼀个属性对分类的信息增益⼤⼩来决定属性所在的层次,信息增益越⼤,则越 应该先作为分类依据。 ID3算法步骤 a.对当前例⼦集合,计算属性的信息增益; b.选择信息增益最⼤的属性Ai(关于信息增益后⾯会有详细叙述) c.把在Ai处取值相同的例⼦归于同于⼦集,Ai取⼏个值就得⼏个⼦集 d.对依次对每种取值情况下的⼦集,递归调⽤建树算法,即返回a, e.若⼦集只含有单个属性,则分⽀为叶⼦节点,判断其属性值并标上相应的符号,然后返回调⽤处,或者树达到规定的深度,或者⼦集所有 元素都属于⼀个分类都结束。 举例分析 世界杯期间我和同学⼀起去吃了⼏回⼤排档,对那种边凑热闹边看球的氛围感觉很不错,但虽然每个夏天我都会凑⼏回这种热闹,但肯定并 不是所有⼈都喜欢凑这种热闹的,⽽应⽤决策树算法则能有效发现哪些⼈愿意去,哪些⼈偶尔会去,哪些⼈从不愿意去; 变量如表1所⽰,⾃变量为年龄、职业、性别;因变量为结果(吃⼤排档的频率)。 年龄A 职业B 性别C 结果 20-30 学⽣ 男 偶尔 30-40 ⼯⼈ 男 经常 40-50 教师 ⼥ 从不 20-30 ⼯⼈ ⼥ 偶尔 60-70 教师 男 从不 40-50 ⼯⼈ ⼥ 从不 30-40 教师 男 偶尔 20-30 学⽣ ⼥ 从不 20以下 学⽣ 男 偶尔 20以下 ⼯⼈ ⼥ 偶尔 20-30 ⼯⼈ 男 经常 20以下 学⽣ 男 偶尔 20-30 教师 男 偶尔 60-70 教师 ⼥ 从不 30-40 ⼯⼈ ⼥ 偶尔 60-70 ⼯⼈ 男 从不 计算过程: 1、⾸先计算结果选项出现的频率: 表2 结果频率表 从不p1 经常p2 偶尔p3 0.375 0.125 0.5 2、计算因变量的期望信息: E(结果)=-(p1*log2(p1)+p2*log2(p2)+p3*log2(p3) ) =-(0.375*log2(0.375)+0.125*log2(0.125)+0.5*log2(0.5) ) =1.406 注:这⾥Pi对应上⾯的频率 3、计算⾃变量的期望信息(以年龄A为例): E(A)= count(Aj)/count(A)* (-(p1j*log2(p1j)+p2j*log2(p2j)+p3j*log2(p3j) )) 3.1公式说明: Count(Aj):年龄A第j个选项个数; j是下⾯表3五个选项任⼀ 表3 年龄记录数量表 选项 20-30 20以下 30-40 40-50 60-70 数量 5 3 3 2 3 Count(A):年龄总记录数 p1j =count(A1j)/count(Aj) :年龄A第j个选项在结果中选择了"从不"的个数占年龄A第j个选项个数的⽐例; p2j =count(A2j)/count(Aj) :年龄A第j个选项在结果中选择了"偶尔"的个数占年龄A第j个选项个数的⽐例; p3j =count(A3j)/count(Aj) :年龄A第j个选项在结果中选择了"经常"的个数占年龄A第j个选项个数的⽐例; 3.2公式分析 在决策树中⾃变量是否显著影响因变量的判定标准由⾃变量选项的不同能否导致因变量结果的不同决定,举例来说如果⽼年⼈都从不去⼤排 档,中年⼈都经常去,⽽少年都偶尔去,那么年龄因素肯定是决定是否吃⼤排档的主要因素; 按照假设,即不同年龄段会对结果产⽣确定的影响,以表3年龄在20以下的3个⼈为例,假设他们都在结果中选择了"偶尔"选项,此时: p2j =count(A2j)/count(Aj)=1, p1j =co

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值