九、初识卷积

文章介绍了卷积在图像处理中的作用,通过边缘检测帮助理解卷积概念;Padding用于保持图像尺寸,增强边缘信息利用;Strideconvolution讨论了卷积核移动步长对输出尺寸的影响;并讲解了RGB图像的卷积处理,包括通道和卷积核的匹配。
摘要由CSDN通过智能技术生成

1、通过边缘检测认识卷积

\qquad 在使用神经网络进行图像识别时,神经网络的前几层需要完成对图像的边缘检测任务,所谓的边缘检测就是让计算机识别出一张图片的垂直边缘和水平边缘,如下图所示:
在这里插入图片描述
\qquad 加入当前有一张661的灰度图像,图像中的数字越小,表示图像的颜色越深,则通过以下卷积(符号为*)计算,可以得到一张新的441的图像,新图像中的中间部分便可以直观表现出原始图像的垂直边缘。
在这里插入图片描述
\qquad 其中,中间参与卷积运算的331的矩阵称为卷积核(kernal)或者过滤器(filter)。

2、Padding

\qquad 设定原图像的尺寸为 n ∗ n n*n nn,卷积核的维度为 f ∗ f f*f ff,则经过卷积计算只有的输出图像的尺寸为 ( n − f + 1 ) ∗ ( n − f + 1 ) (n-f+1)*(n-f+1) (nf+1)(nf+1)。从上述卷积计算过程可以发现,原图像边缘的像素点使用的次数远低于中间像素点的使用次数,为了充分利用边缘像素点的信息,可以通过Padding操作,在原图像的边缘添加额外的 p p p层像素点,之后使用 Padding之后的图像进行卷积操作,操作过程如下图所示:
在这里插入图片描述
\qquad Padding到原图像上的图像的层数 p = f − 1 2 p=\frac{f-1}{2} p=2f1时,Padding之后的图像经过 f ∗ f f*f ff卷积层的卷积操作之后,得到的结果图像恰好和原图像的尺寸相同,为 n ∗ n n*n nn。卷积核的维度 f f f通常为奇数。

3、Strid Convelution

\qquad 在进行卷积操作时,卷积核每一次移动的步长(strid)不一定为1,也可以为大于1的其他数。则考虑了移动步长 s s s之后,一幅 n ∗ n n*n nn的图像,经过 p p p层padding操作,经过 f ∗ f f*f ff维度的卷积核进行卷积操作之后,可以得到结果图像的维度为: ⌊ n + 2 p − f s + 1 ⌋ ∗ ⌊ n + 2 p − f s + 1 ⌋ \lfloor{\frac{n+2p-f}{s}+1} \rfloor * \lfloor{\frac{n+2p-f}{s}+1}\rfloor sn+2pf+1sn+2pf+1。 Stride convelution的示意图如下图所示:
在这里插入图片描述

4、RGB图像的卷积

\qquad 对于RGB图像,令一幅RGB图像的输入维度为 n ∗ n ∗ n c n*n*n_c nnnc其中,前两个 n n n分别表示图像的高度和宽度,最后一个 n c n_c nc维度表示图像的通道(channel)数量;对于RGB图像的卷积操作使用的卷积核的维度为 f ∗ f ∗ n c f*f*n_c ffnc。最终输出的图像维度为: ( n − f + 1 ) ∗ ( n − f + 1 ) (n-f+1)*(n-f+1) (nf+1)(nf+1)。可以使用不同类型的多个卷积核,从而增加输出图像的通道数,如使用2个不同的卷积核,则输出图像的维度为: ( n − f + 1 ) ∗ ( n − f + 1 ) ∗ 2 (n-f+1)*(n-f+1)*2 (nf+1)(nf+1)2
在这里插入图片描述

THE END

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dragon Fly

多谢老板赏钱[抱拳抱拳抱拳]

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值