旅行商(TSP)问题建模和子路径(subtour)消除约束详解

1、TSP问题描述

\qquad TSP问题为travelling salesman Problem的缩写,问题描述为:一名旅行商需要从他的住址(home)出发,游历n个城市,之后再返回home。已知所有城市间的旅行成本,问题目标为:这位旅行商应该选择怎样的线路旅游,才能花最少的钱游历一遍所有的城市?

2、TSP问题建模

2.1 参数定义

\qquad 定义城市的总个数为: n n n,从城市 i i i到城市 j j j的旅行成本为: C i j , i ∈ n , j ∈ n C_{ij},i\in n,j\in n Cijinjn

2.2 变量定义

\qquad 定义0-1变量 x i j = { 1 , i f 旅行商从城市 i 到城市 j 0 , i f 旅行商不从城市 i 到城市 j x_{ij}=\left\{ \begin{matrix} 1,if旅行商从城市i到城市j\\ 0,if旅行商不从城市i到城市j \end{matrix} \right. xij={1if旅行商从城市i到城市j0if旅行商不从城市i到城市j

2.3 模型建模

2.3.1 目标函数

m i n i m i z e C i j x i j minimize \quad C_{ij}x_{ij} minimizeCijxij
\qquad 目标函数表示最小化旅行总费用。

2.3.2 约束条件

∑ j ≠ i x i j = 1 ,   i ∈ n ( 1 ) \sum_{j\neq i} {x_{ij}=1, \ i\in n} \qquad\qquad\qquad\qquad\qquad\qquad\qquad (1) j=ixij=1, in(1)
\qquad 约束条件(1)表示每一个城市 i i i需要离开一次。
∑ i ≠ j x i j = 1 ,   j ∈ n ( 2 ) \sum_{i\neq j} {x_{ij}=1, \ j\in n}\qquad\qquad\qquad\qquad\qquad\qquad\qquad (2) i=jxij=1, jn(2)
\qquad 约束条件(2)表示每一个城市 i i i需要进入一次。
\qquad 若仅仅考虑上述问题情景中的描述要去,则约束(1)和(2)已经满足所有条件,但是会出现子路径的情况
在这里插入图片描述
\qquad 如上图所示,旅行商从红色城市出发,上述的路径满足所有的约束条件,但是明显不符合实际情况,所以需要添加额外的子路径消除约束来避免上述情况的发生。

3、 子路径消除约束

3.1 子路径消除不等式一(SEC1)

∑ i ∈ S ∑ j ∉ S x i j ≥ 1 ,   S ⊂ N = { 1 , 2 , . . . , n } , S ≠ ∅ ( 3 ) \sum_{i\in S}\sum_{j\notin S} {x_{ij}\geq1, \, S\subset N=\{1,2,...,n\},S\neq\emptyset} \qquad\qquad (3) iSj/Sxij1,SN={1,2,...,n},S=(3)
\qquad 解释: 对于每一个非空集合 S S S S S S中城市的个数最多为 n − 1 n-1 n1个,从 S S S中流出的弧的个数必定大于或者等于一条。将上述图中的子路径的情况套用到这个不等式上,很明显会违反不等式一,所以将这条不等式加入到模型中能够有效消除子路径问题。同时,不等式一会添加的约束个数为:
c n 1 + c n 2 + . . . + c n n − 1 = 2 n − 2 c_{n}^{1}+c_{n}^{2}+...+c_{n}^{n-1}=2^{n}-2 cn1+cn2+...+cnn1=2n2条约束。

3.2 子路径消除不等式二(SEC2)

∑ i ∈ S ∑ j ∈ S x i j ≤ ∣ S ∣ − 1 ,   S ⊂ N = { 1 , 2 , . . . , n } ,   2 ≤ ∣ S ∣ ≤ n − 1 ( 4 ) \sum_{i\in S}\sum_{j\in S} {x_{ij}\leq|S|-1, \, S\subset N=\{1,2,...,n\},\,2\leq|S|\leq n-1} \qquad (4) iSjSxijS1,SN={1,2,...,n},2Sn1(4)
\qquad 解释: 对于每一个集合 S S S S S S相互链接的弧的个数最多为 ∣ S ∣ − 1 |S|-1 S1条,即只有当 S S S中的城市的个数为 n n n个时,才允许构成环路,这样不等式二也可以避免上述图中的情况发生。同时,不等式二会添加的约束个数为:
c n 2 + c n 3 + . . . + c n n − 1 = 2 n − 2 − n c_{n}^{2}+c_{n}^{3}+...+c_{n}^{n-1}=2^{n}-2-n cn2+cn3+...+cnn1=2n2n条约束。

3.3 子路径消除不等式三(MTZ [ 1 ] ^{[1]} [1])

\qquad 引入一个新的变量 u i ∈ [ 1 , n − 1 ] , i ∈ { 1 , . . . , n − 1 } u_i\in[1,n-1], i\in\{1,...,n-1\} ui[1,n1],i{1,...,n1}表示city i i i 在TSP路径中的索引位置,MTZ子环路消除不等式的形式如下所示:
u i − u j + ( n − 1 ) ⋅ x i j ≤ n − 2 ,    i , j ∈ { 1 , . . . , n − 1 } : i ≠ j u_i-u_j+(n-1)\cdot x_{ij}\le n-2,\ \ i,j\in \{1,...,n-1\}:i\neq j uiuj+(n1)xijn2,  i,j{1,...,n1}:i=j
\qquad MTZ不等式通过引入 n n n个新的变量,将子环路消除不等式约束的数量变为了 n 2 n^2 n2个,对于规模较大的算例,相对于SEC不等式更有优势。而且避免了SEC不等式的显式枚举过程。

3.4 子路径消除不等式四(DL [ 2 ] ^{[2]} [2])

\qquad DL不等式针对MTZ不等式进行了进一步的改进,DL的形式如下所示:
u i − u j + ( n − 1 ) ⋅ x i j + ( n − 3 ) ⋅ x j i ≤ n − 2 ,    i , j ∈ { 1 , . . . , n − 1 } : i ≠ j u_i-u_j+(n-1)\cdot x_{ij}+(n-3)\cdot x_{ji}\le n-2,\ \ i,j\in \{1,...,n-1\}:i\neq j uiuj+(n1)xij+(n3)xjin2,  i,j{1,...,n1}:i=j
\qquad DL不等式相对于MTZ不等式在空间切割的效果更强,有利于模型在更短的时间内收敛。

Reference

[1]. Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming formulation of traveling salesman problems. Journal of the ACM (JACM), 7(4), 326-329.
[2]. Desrochers, M., & Laporte, G. (1991). Improvements and extensions to the Miller-Tucker-Zemlin subtour elimination constraints. Operations Research Letters, 10(1), 27-36.

THE END. THANKS FOR WATCHING.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dragon Fly

多谢老板赏钱[抱拳抱拳抱拳]

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值