[BiB|论文简读] DGP-PGTN:端到端可解释的疾病基因关联预测
最近搞了个公众号《AI and Bioinformatics》介绍应用于生物信息学的人工智能算法和研究进展,以及网络表示学习算法研究,欢迎向本公众号投稿文献解读类原创文章,可以是自己or自己组的论文,也可以是阅读觉得不错的论文。投稿邮箱:nan_sheng@yeah.net
公众号地址
今天推荐的是东北林业大学汪国华教授团队在《Briefings in Bioinformatics》发表题为 “End-to-end interpretable disease–gene association prediction” 论文。
简介
识别疾病基因关联是理解分子机制、疾病诊断和治疗的一项基本和关键的生物医学任务。通过实验验证疾病和基因之间的因果关系既费时又昂贵。最近,深度学习方法在识别遗传疾病的候选基因方面取得了巨大的成功。基因预测问题可以建模为基于基因-疾病图的节点和边的特征的链接预测问题。然而,现有的研究大多是基于单一数据源构建同构网络或基于多源数据构建异构网络,人为定义元路径,以学习疾病和基因的网络表示。前者无法利用丰富的多源异构信息,而后者在定义元路径时需要领域知识和经验,模型的准确性在很大程度上取决于元路径的定义。为了解决上述瓶颈问题,我们提出了一种基于并行parallel graph transformer network 的端到端疾病基因关联预测模型(DGP-PGTN),该模型深度整合了疾病、基因、本体和表型的异构信息。DGP-PGTN能够自动全面捕捉疾病与基因之间的多重潜在相互作用,发现它们之间的因果关系,同时具有充分的解释力。我们进行了全面的实验,并表明DGP-PGTN在疾病基因关联预测任务上显著优于最先进的方法。此外,DGP-PGTN可以自动学习疾病与基因之间的隐含关系,而无需手动定义元路径。
参考资料:
Li Y, Guo Z, Wang K, et al. End-to-end interpretable disease–gene association prediction. Briefings in Bioinformatics, 2023: bbad118.
文章地址:
https://doi.org/10.1093/bib/bbad118
代码地址:
https://github.com/catly/DGP-PGTN