CF1514-C.Product 1 Modulo N

21 篇文章 0 订阅
11 篇文章 0 订阅

题意

给出一个 n n n ( 2 ≤ n ≤ 1 0 5 2\leq n \leq 10^5 2n105),在 [ 1 , n − 1 ] [1,n-1] [1,n1] 内求出一个最长的子序列,使得该序列的乘积模 n n n 等于 1 1 1。求出序列的最长长度以及序列的各个数是多少。

分析

首先有如下等式成立:
∏ g c d ( x , n ) = 1 , x < n x = ± 1 m o d    n \prod_{gcd(x,n)=1,x<n}{x}=\pm1 \mod n gcd(x,n)=1,x<nx=±1modn
根据该等式,如果乘积 p p p 取模 n n n 的结果为 1 1 1,那么所有与 n n n 互质的数即为答案。如果取模结果为 n − 1 n-1 n1 ,则可以从乘积中去除掉 n − 1 n-1 n1,剩余的数即为答案,且 n − 1 n-1 n1 必定会出现在序列之中,因为 g c d ( n − 1 , n ) = 1 gcd(n-1,n)=1 gcd(n1,n)=1

接下来考虑用逆元的知识证明上述等式成立:
对于一个数 x x x ,满足 g c d ( x , n ) = 1 gcd(x,n)=1 gcd(x,n)=1,即 x m o d    n = 1 x\mod n=1 xmodn=1。对于 x x x 的逆元 y y y,因为 x y m o d    n = 1 xy\mod n=1 xymodn=1,可知 y m o d    n = 1 y\mod n=1 ymodn=1,即 y y y 也在序列当中。
然后是序列中 x 2 = 1 m o d    n x^2=1\mod n x2=1modn 的情况,首先有 x m o d    n ≠ ( n − x ) m o d    n x \mod n \neq (n-x) \mod n xmodn=(nx)modn,否则就有 2 x = n 2x=n 2x=n 出现,显然不成立。且 g c d ( x , n ) = 1 gcd(x,n)=1 gcd(x,n)=1 可以推出 g c d ( n − x , n ) = 1 gcd(n-x,n)=1 gcd(nx,n)=1,即 n − x n-x nx 也在序列当中,且也有 ( n − x ) 2 = 1 m o d    n (n-x)^2=1\mod n (nx)2=1modn。所以, x ( n − x ) = − 1 m o d    n x(n-x)=-1\mod n x(nx)=1modn
即证。

代码

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#define pb push_back
using namespace std;
const int N=1e5+5;
int ans[N];
int gcd(int x,int y){
    return y?gcd(y,x%y):x;
}
int main(){
    int n,res=1,cnt=0;
    scanf("%d",&n);
    for(int i=1;i<n;i++){
        if(gcd(i,n)==1){
            ans[++cnt]=i;
            res=1LL*res*i%n;
        }
    }
    cnt-=(res%n!=1);
    printf("%d\n",cnt);
    for(int i=1;i<=cnt;i++)
        printf("%d%c",ans[i],i==cnt?'\n':' ');
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值