Codeforces1514 C. Product 1 Modulo N(数论)

题意:

在这里插入图片描述

解法:
不能选与n不互质的数,
因为选了之后%n一定不为1,因为gcd(乘积,n)!=1.
证明:gcd(p,n)=z,则p=xz,n=yz,
设选的其他数乘积为q,
则pq%n=1,设pq=kn+1,
那么qxz=kyz+1,
(qx-ky)z=1,
当且仅当z=1时式子才有可能成立,
而gcd=z>1,因此式子不可能成立,
所以如果选择了gcd!=1的数,一定不满足条件.

因此只能选与n互质的数,
设s为所有与n互质的数的积对n取模的结果,
如果s=1,那么这些数全部可以选择,
如果s!=1,此时s一定与n互质,因此s也在这些数中,
那么选除了s的其他数就行了.
code:
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int maxm=2e6+5;
vector<int>ans;
map<int,int>mp;
int n;
void solve(){
    cin>>n;
    int s=1;
    for(int i=1;i<=n-1;i++){
        if(__gcd(i,n)!=1){
            mp[i]=1;
        }else{
            s=s*i%n;
        }
    }
    if(s!=1)mp[s]=1;
    for(int i=1;i<=n-1;i++){
        if(!mp[i]){
            ans.push_back(i);
        }
    }
    cout<<ans.size()<<endl;
    for(auto i:ans){
        cout<<i<<' ';
    }
    cout<<endl;
}
signed main(){
    ios::sync_with_stdio(0);
    solve();
    return 0;
}

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值