【数据结构】1-4算法的空间复杂度

  • 空间复杂度的定义以及计算

空间复杂度--空间开销(内存开销)与问题规模 n 之间的关系

无论问题规模怎么变,算法运行所需的内存空间都是固定的常量,算法空间复杂度S(n) = O(1)S 表示 “Space”

 

算法原地工作——算法所需内存空间为常量

假设一个 int 变量占 4B则所需内存空间 = 4 + 4n + 4 = 4n + 8 ;空间复杂度S(n) = O(n)

加法规则T(n) = T1(n) + T2(n) = O(f(n)) + O(g(n)) = O(max(f(n), g(n)))

常用空间复杂度的比较:O(1) < O(log_2n) < O(n) < O(nlog_2n) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)

常<对<幂<指<阶

  • 递归函数的空间复杂度分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值