基础作业:
使用 LMDeploy 以本地对话、网页Gradio、API服务中的一种方式部署 InternLM-Chat-7B 模型,生成 300 字的小故事(需截图)
进阶作业(可选做)
将第四节课训练自我认知小助手模型使用 LMDeploy 量化部署到 OpenXLab 平台。
对internlm-chat-7b模型进行量化,并同时使用KV Cache量化,使用量化后的模型完成API服务的部署,分别对比模型量化前后(将 bs设置为 1 和 max len 设置为512)和 KV Cache 量化前后(将 bs设置为 8 和 max len 设置为2048)的显存大小。
在自己的任务数据集上任取若干条进行Benchmark测试,测试方向包括:
(1)TurboMind推理+Python代码集成
(2)在(1)的基础上采用W4A16量化
(3)在(1)的基础上开启KV Cache量化
(4)在(2)的基础上开启KV Cache量化
(5)使用Huggingface推理
备注:由于进阶作业较难,完成基础作业之后就可以先提交作业了,在后续的大作业项目中使用这些技术将作为重要的加分点!