深度学习笔记(15):第二课第一周第三次作业

剖析与心得

在本次实验中,我们使用梯度检验方法,将输入的参数稍稍改变一点,因为我们有很大把握使得最后的损失值是对的,所以,我们直接用损失值的变化量除以自变量的改变量,得到的就是导数值的近似值,在一定误差允许范围内,如果其和我们使用梯度下降求出来的值相近,那么说明,我们梯度下降的算法的书写没有问题;否则则说明有问题。

本次实验中,写了两部分代码:
第一部分是针对简单的单元变量进行检验,热身;
第二部分是对于神经网络进行梯度检验。

注意理解抽象含义:对于某一个变量的偏导数就是所谓的梯度的一部分,而偏导数实则近似的话来看就是应变量(代价函数)变化量/自变量变化量。
(补充一点,在这个实验里面,最后按照他的地方去修改是改不到1e-7的…而是这个数,注意一下就好,没啥大事其实
在这里插入图片描述

ok现在开始

梯度检验原理(题干引入)

反向传播计算梯度 ∂ J ∂ θ \frac{\partial J}{\partial \theta} θJ,其中 θ \theta θ表示模型的参数。使用正向传播和损失函数来计算 J J J

由于正向传播相对容易实现,相信你有信心能做到这一点,确定100%计算正确的损失 J J J。为此,你可以使用 J J J来验证代码 ∂ J ∂ θ \frac{\partial J}{\partial \theta} θJ

让我们回顾一下导数(或者说梯度)的定义:
∂ J ∂ θ = lim ⁡ ε → 0 J ( θ + ε ) − J ( θ − ε ) 2 ε (1) \frac{\partial J}{\partial \theta} = \lim_{\varepsilon \to 0} \frac{J(\theta + \varepsilon) - J(\theta - \varepsilon)}{2 \varepsilon} \tag{1} θJ=ε0lim2εJ(θ+ε)J(θε)(1)

如果你还不熟悉" lim ⁡ ε → 0 \displaystyle \lim_{\varepsilon \to 0} ε0lim"表示法,其意思只是“当 ε \varepsilon ε值趋向很小时”。

我们知道以下内容:

  • ∂ J ∂ θ \frac{\partial J}{\partial \theta} θJ是你要确保计算正确的对象。
  • 你可以计算 J ( θ + ε ) J(\theta + \varepsilon) J(θ+ε) J ( θ − ε ) J(\theta - \varepsilon) J(θε)(在 θ \theta θ是实数的情况下),因为要保证 J J J的实现是正确的。

让我们使用方程式(1)和 ε \varepsilon ε的一个小值来说服CEO你计算 ∂ J ∂ θ \frac{\partial J}{\partial \theta} θJ的代码是正确的

一维部分的代码

# GRADED FUNCTION: forward_propagation

def forward_propagation(x, theta):
    """
    Implement the linear forward propagation (compute J) presented in Figure 1 (J(theta) = theta * x)
    
    Arguments:
    x -- a real-valued input
    theta -- our parameter, a real number as well
    
    Returns:
    J -- the value of function J, computed using the formula J(theta) = theta * x
    """
    
    ### START CODE HERE ### (approx. 1 line)
    J = theta*x
    ### END CODE HERE ###
    
    return J
# GRADED FUNCTION: backward_propagation

def backward_propagation(x, theta):
    """
    Computes the derivative of J with respect to theta (see Figure 1).
    
    Arguments:
    x -- a real-valued input
    theta -- our parameter, a real number as well
    
    Returns:
    dtheta -- the gradient of the cost with respect to theta
    """
    
    ### START CODE HERE ### (approx. 1 line)
    dtheta = x
    ### END CODE HERE ###

    
    return dtheta

练习:为了展示backward_propagation()函数正确计算了梯度 ∂ J ∂ θ \frac{\partial J}{\partial \theta} θJ,让我们实施梯度检验。

说明

  • 首先使用上式(1)和 ε \varepsilon ε的极小值计算“gradapprox”。以下是要遵循的步骤:
    1. θ + = θ + ε \theta^{+} = \theta + \varepsilon θ+=θ+ε
    2. θ − = θ − ε \theta^{-} = \theta - \varepsilon θ=θε
    3. J + = J ( θ + ) J^{+} = J(\theta^{+}) J+=J(θ+)
    4. J − = J ( θ − ) J^{-} = J(\theta^{-}) J=J(θ)
    5. g r a d a p p r o x = J + − J − 2 ε gradapprox = \frac{J^{+} - J^{-}}{2 \varepsilon} gradapprox=2εJ+J
  • 然后使用反向传播计算梯度,并将结果存储在变量“grad”中
  • 最后,使用以下公式计算“gradapprox”和“grad”之间的相对差:

d i f f e r e n c e = ∣ ∣ g r a d − g r a d a p p r o x ∣ ∣ 2 ∣ ∣ g r a d ∣ ∣ 2 + ∣ ∣ g r a d a p p r o x ∣ ∣ 2 (2) difference = \frac {\mid\mid grad - gradapprox \mid\mid_2}{\mid\mid grad \mid\mid_2 + \mid\mid gradapprox \mid\mid_2} \tag{2} difference=grad2+gradapprox2gradgradapprox2(2)

你需要3个步骤来计算此公式:
* 1. 使用np.linalg.norm(…)计算分子
* 2. 计算分母,调用np.linalg.norm(…)两次
* 3. 相除

  • 如果差异很小(例如小于 1 0 − 7 10^{-7} 107),则可以确信正确计算了梯度。否则,梯度计算可能会出错。
# GRADED FUNCTION: gradient_check

def gradient_check(x, theta, epsilon = 1e-7):
    """
    Implement the backward propagation presented in Figure 1.
    
    Arguments:
    x -- a real-valued input
    theta -- our parameter, a real number as well
    epsilon -- tiny shift to the input to compute approximated gradient with formula(1)
    
    Returns:
    difference -- difference (2) between the approximated gradient and the backward propagation gradient
    """
    
    # Compute gradapprox using left side of formula (1). epsilon is small enough, you don't need to worry about the limit.
    ### START CODE HERE ### (approx. 5 lines)
    thetaplus = theta + epsilon                              # Step 1
    thetaminus = theta - epsilon                        # Step 2
    Jplus =  forward_propagation(x,thetaplus)                                # Step 3
    Jminus =  forward_propagation(x,thetaminus)                                # Step 4
    gradapprox =  (Jplus - Jminus)/(2*epsilon)                             # Step 5
    ### END CODE HERE ###

    # Check if gradapprox is close enough to the output of backward_propagation()
    ### START CODE HERE ### (approx. 1 line)
    grad = backward_propagation(x,theta)
    ### END CODE HERE ###

    ### START CODE HERE ### (approx. 1 line)
    fenzi = np.linalg.norm(grad-gradapprox)                       # Step 1'
    fenmu = np.linalg.norm(grad)+np.linalg.norm(gradapprox)      # Step 2'
    difference = fenzi/fenmu                                # Step 3'
    ### END CODE HERE ###
    
    if difference < 1e-7:
        print ("The gradient is correct!")
    else:
        print ("The gradient is wrong!")
    
    return difference

在这里插入图片描述

高维数据的梯度检验

def forward_propagation_n(X, Y, parameters):
    """
    Implements the forward propagation (and computes the cost) presented in Figure 3.
    
    Arguments:
    X -- training set for m examples
    Y -- labels for m examples 
    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
                    W1 -- weight matrix of shape (5, 4)
                    b1 -- bias vector of shape (5, 1)
                    W2 -- weight matrix of shape (3, 5)
                    b2 -- bias vector of shape (3, 1)
                    W3 -- weight matrix of shape (1, 3)
                    b3 -- bias vector of shape (1, 1)
    
    Returns:
    cost -- the cost function (logistic cost for one example)
    """
    
    # retrieve parameters
    m = X.shape[1]
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    Z1 = np.dot(W1, X) + b1
    A1 = relu(Z1)
    Z2 = np.dot(W2, A1) + b2
    A2 = relu(Z2)
    Z3 = np.dot(W3, A2) + b3
    A3 = sigmoid(Z3)

    # Cost
    logprobs = np.multiply(-np.log(A3),Y) + np.multiply(-np.log(1 - A3), 1 - Y)
    cost = 1./m * np.sum(logprobs)
    
    cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)
    
    return cost, cache
def backward_propagation_n(X, Y, cache):
    """
    Implement the backward propagation presented in figure 2.
    
    Arguments:
    X -- input datapoint, of shape (input size, 1)
    Y -- true "label"
    cache -- cache output from forward_propagation_n()
    
    Returns:
    gradients -- A dictionary with the gradients of the cost with respect to each parameter, activation and pre-activation variables.
    """
    
    m = X.shape[1]
    (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache
    
    dZ3 = A3 - Y
    dW3 = 1./m * np.dot(dZ3, A2.T)
    db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)
    
    dA2 = np.dot(W3.T, dZ3)
    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = 1./m * np.dot(dZ2, A1.T) * 2
    db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)
    
    dA1 = np.dot(W2.T, dZ2)
    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = 1./m * np.dot(dZ1, X.T)
    db1 = 4./m * np.sum(dZ1, axis=1, keepdims = True)
    
    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,
                 "dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2,
                 "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1}
    
    return gradients

梯度检验原理

与1和2中一样,你想将“gradapprox”与通过反向传播计算的梯度进行比较。公式仍然是:

∂ J ∂ θ = lim ⁡ ε → 0 J ( θ + ε ) − J ( θ − ε ) 2 ε (1) \frac{\partial J}{\partial \theta} = \lim_{\varepsilon \to 0} \frac{J(\theta + \varepsilon) - J(\theta - \varepsilon)}{2 \varepsilon} \tag{1} θJ=ε0lim2εJ(θ+ε)J(θε)(1)

但是, θ \theta θ不再是标量。 而是一个叫做“参数”的字典。 我们为你实现了一个函数"dictionary_to_vector()"。它将“参数”字典转换为称为“值”的向量,该向量是通过将所有参数(W1, b1, W2, b2, W3, b3)重塑为向量并将它们串联而获得的。

反函数是“vector_to_dictionary”,它输出回“parameters”字典。

Image Name

图2:dictionary_to_vector()和vector_to_dictionary()
你将在 gradient_check_n()中用到这些函数

我们还使用gradients_to_vector()将“gradients”字典转换为向量“grad”。

练习:实现gradient_check_n()。

说明:这是伪代码,可帮助你实现梯度检验。

For each i in num_parameters:

  • 计算J_plus [i]
    1. 将 θ + \theta^{+} θ+设为 np.copy(parameters_values)
    2. 将 θ i + \theta^{+}_i θi+ 设为 θ i + + ε \theta^{+}_i + \varepsilon θi++ε
    3. 使用forward_propagation_n(x, y, vector_to_dictionary( θ + \theta^{+} θ+ ))计算 J i + J^{+}_i Ji+
  • 计算J_minus [i]:也是用 θ − \theta^{-} θ
  • 计算 g r a d a p p r o x [ i ] = J i + − J i − 2 ε gradapprox[i] = \frac{J^{+}_i - J^{-}_i}{2 \varepsilon} gradapprox[i]=2εJi+Ji

因此,你将获得向量gradapprox,其中gradapprox[i]是相对于parameter_values[i]的梯度的近似值。现在,你可以将此gradapprox向量与反向传播中的梯度向量进行比较。就像一维情况(步骤1’,2’,3’)一样计算:
d i f f e r e n c e = ∥ g r a d − g r a d a p p r o x ∥ 2 ∥ g r a d ∥ 2 + ∥ g r a d a p p r o x ∥ 2 (3) difference = \frac {\| grad - gradapprox \|_2}{\| grad \|_2 + \| gradapprox \|_2 } \tag{3} difference=grad2+gradapprox2gradgradapprox2(3)

代码实现

# GRADED FUNCTION: gradient_check_n

def gradient_check_n(parameters, gradients, X, Y, epsilon = 1e-7):
    """
    Checks if backward_propagation_n computes correctly the gradient of the cost output by forward_propagation_n
    
    Arguments:
    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
    grad -- output of backward_propagation_n, contains gradients of the cost with respect to the parameters. 
    x -- input datapoint, of shape (input size, 1)
    y -- true "label"
    epsilon -- tiny shift to the input to compute approximated gradient with formula(1)
    
    Returns:
    difference -- difference (2) between the approximated gradient and the backward propagation gradient
    """
    
    # Set-up variables
    parameters_values, _ = dictionary_to_vector(parameters)
    grad = gradients_to_vector(gradients)
    num_parameters = parameters_values.shape[0]
    J_plus = np.zeros((num_parameters, 1))
    J_minus = np.zeros((num_parameters, 1))
    gradapprox = np.zeros((num_parameters, 1))
    
    # Compute gradapprox
    for i in range(num_parameters):
        
        # Compute J_plus[i]. Inputs: "parameters_values, epsilon". Output = "J_plus[i]".
        # "_" is used because the function you have to outputs two parameters but we only care about the first one
        ### START CODE HERE ### (approx. 3 lines)
        thetaplus = np.copy(parameters_values)# Step 1
        thetaplus[i] = thetaplus[i]+epsilon # Step 2
        J_plus[i],cache_plus = forward_propagation_n(X, Y, vector_to_dictionary(thetaplus))                 # Step 3
        ### END CODE HERE ###

        # Compute J_minus[i]. Inputs: "parameters_values, epsilon". Output = "J_minus[i]".
        ### START CODE HERE ### (approx. 3 lines)
        thetaminus = np.copy(parameters_values)# Step 1
        thetaminus[i] = thetaminus[i]-epsilon # Step 2
        J_minus[i],cache_minus = forward_propagation_n(X, Y, vector_to_dictionary(thetaminus))                 # Step 3
        ### END CODE HERE ###

        # Compute gradapprox[i]
        ### START CODE HERE ### (approx. 1 line)
        
        gradapprox[i] = (J_plus[i]-J_minus[i])/(2*epsilon)

        ### END CODE HERE ###
    
    # Compare gradapprox to backward propagation gradients by computing difference.
    ### START CODE HERE ### (approx. 1 line)
    fenzi = np.linalg.norm(grad-gradapprox)                       # Step 1'
    fenmu = np.linalg.norm(grad)+np.linalg.norm(gradapprox)      # Step 2'
    difference = fenzi/fenmu                                # Step 3'
    ### END CODE HERE ###

    if difference > 1e-7:
        print ("\033[93m" + "There is a mistake in the backward propagation! difference = " + str(difference) + "\033[0m")
    else:
        print ("\033[92m" + "Your backward propagation works perfectly fine! difference = " + str(difference) + "\033[0m")
    
    return difference

在这里插入图片描述差距较大,认为有错误

看起来backward_propagation_n代码似乎有错误!很好,你已经实现了梯度检验。返回到backward_propagation并尝试查找/更正错误*(提示:检查dW2和db1)*。如果你已解决问题,请重新运行梯度检验。请记住,如果修改代码,则需要重新执行定义backward_propagation_n()的单元格。

你可以进行梯度检验来证明你的导数计算的正确吗?即使作业的这一部分没有评分,我们也强烈建议你尝试查找错误并重新运行梯度检验,直到确信实现了正确的反向传播。

注意

  • 梯度检验很慢!用 ∂ J ∂ θ ≈ J ( θ + ε ) − J ( θ − ε ) 2 ε \frac{\partial J}{\partial \theta} \approx \frac{J(\theta + \varepsilon) - J(\theta - \varepsilon)}{2 \varepsilon} θJ2εJ(θ+ε)J(θε) 逼近梯度在计算上是很耗费资源的。因此,我们不会在训练期间的每次迭代中都进行梯度检验。只需检查几次梯度是否正确。
  • 至少如我们介绍的那样,梯度检验不适用于dropout。通常,你将运行不带dropout的梯度检验算法以确保你的backprop是正确的,然后添加dropout。

Nice!现在你可以确信你用于欺诈检测的深度学习模型可以正常工作!甚至可以用它来说服你的CEO。 😃

你在此笔记本中应记住的内容

  • 梯度检验可验证反向传播的梯度与梯度的数值近似值之间的接近度(使用正向传播进行计算)。
  • 梯度检验很慢,因此我们不会在每次训练中都运行它。通常,你仅需确保其代码正确即可运行它,然后将其关闭并将backprop用于实际的学习过程。
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值