图神经网络(十一)Graph Random Neural Networks for Semi-Supervised Learning on Graphs

本文作者来自清华大学,现有的GNN存在着过平滑、较差的鲁棒性以及当标记节点缺失时弱泛化性等问题,本文提出一个解决此类问题的框架-图随机神经网络(GRAND)。在GRAND中,本文首先设计了一个随机传播策略来实现图数据的扩展。然后作者利用一致性正则化来优化未标记节点在不同数据扩展中的预测一致性。在图基准数据集上的大量实验表明,在半监督节点分类方面,GRAND显著优于最先进的GNN基线。最后,作者展示了GRAND缓解了过度平滑和非鲁棒性的问题,表现出比现有GNN更好的泛化行为。 代码在这

Model

下面直接进入模型部分,本文的模型虽然简单但是创新性很足,实验部分的结果是我看GCN以来最好的一次,直接上图:
在这里插入图片描述
根据上图架构可以看出,本文的模型是通过某种策略获得多个图,以达到数据增强的作用,再将得到的多个图输入到两层MLP中,最后得到预测标签的结果。

Random Propagation for Graph Data Augmentation

</

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
混合神经网络用于少样本学习。少样本学习是指在给定的样本数量非常有限的情况下,如何进行有效的学习和分类任务。混合神经网络是一种结合了神经网络和其他模型的方法,用于解决少样本学习问题。 首先,混合神经网络神经网络与其他模型结合起来,以充分利用它们在不同任务上的优势。神经网络可以有效地处理结构数据,并捕捉节点之间的关系,而其他模型可能在处理其他类型的数据时更加优秀。通过将它们结合起来,混合神经网络可以在少样本学习中更好地利用有限的数据。 其次,混合神经网络可以通过在训练过程中使用一些预训练模型来提高学习效果。预训练模型是在大规模数据集上进行训练得到的模型,在特定任务上可能有较好的性能。通过将预训练模型与神经网络结合,混合神经网络可以在少样本学习中利用预训练模型的知识,以更好地适应有限的数据。 最后,混合神经网络还可以通过设计适当的注意力机制来提高学习效果。注意力机制可以使网络更加关注重要的特征和关系,忽略无关的信息。在少样本学习中,选择性地关注有限的样本和特征对于提高学习的效果至关重要。混合神经网络可以通过引入适当的注意力机制来实现这一点,以提取和利用关键信息。 综上所述,混合神经网络是一种用于少样本学习的方法,它结合了神经网络和其他模型的优势,并利用预训练模型和适当的注意力机制来提高学习效果。这种方法对于在有限数据条件下执行有效的学习和分类任务非常有帮助。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码匀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值