本文收录于ICLR2016,作者来自于多伦多大学,文章比较老了,但是很经典。GGNN是一种基于GRU的经典空域模型,一个基本的感觉就是GNN+Gate。我们现在看的大部分GNN模型都是基于消息传递机制的,本文虽然也是消息传递机制,但和我们了解的还是有一点差别的,具体来说:本文中聚合邻域信息时考虑了边的方向。其主要贡献主要在于对输出序列的图神经网络的扩展。官方源码在这,第三方pytorch实现在这,推荐第三方实现的。
GGNN模型和GRU非常像,因此在说本文之前,先简单介绍一下RNN的内容、重点介绍GRU:
RNN
关于RNN、LSTM的知识可以看李宏毅老师的课程,讲的非常好,传送门,这里只简单概括一下。首先介绍一下最简单的RNN模型: