图神经网络(二十八)GATED GRAPH SEQUENCE NEURAL NETWORKS

本文介绍了GGNN(Gated Graph Sequence Neural Networks),一种结合GRU的图神经网络模型,常见于ICLR2016。GGNN在处理图结构数据时考虑了边的方向,通过节点标注和传播模型进行信息传递。模型基于GRU,通过传播和门控机制更新节点状态,适用于节点分类和图级别分类任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文收录于ICLR2016,作者来自于多伦多大学,文章比较老了,但是很经典。GGNN是一种基于GRU的经典空域模型,一个基本的感觉就是GNN+Gate。我们现在看的大部分GNN模型都是基于消息传递机制的,本文虽然也是消息传递机制,但和我们了解的还是有一点差别的,具体来说:本文中聚合邻域信息时考虑了边的方向。其主要贡献主要在于对输出序列的图神经网络的扩展。官方源码在这第三方pytorch实现在这,推荐第三方实现的。

GGNN模型和GRU非常像,因此在说本文之前,先简单介绍一下RNN的内容、重点介绍GRU:

RNN

关于RNN、LSTM的知识可以看李宏毅老师的课程,讲的非常好,传送门,这里只简单概括一下。首先介绍一下最简单的RNN模型:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码匀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值