HBM:让ChatGPT突破内存墙的高带宽存储器
摘要
在当前以生成类模型为代表的人工智能领域,内存带宽和存储容量成为瓶颈,制约了计算性能的提升。HBM(High Bandwidth Memory,高带宽存储器)作为一种基于3D堆叠工艺的高附加值DRAM产品,通过增加带宽和扩展内存容量,减少了内存和存储带来的延迟,成为突破“内存墙”的关键技术。本文将详细探讨HBM的技术特点、市场现状及其在AI计算中的应用。
1. 引言
人工智能的发展,尤其是以ChatGPT为代表的生成类模型,对计算资源提出了更高的要求。模型训练需要处理海量数据,对内存的带宽和容量提出了严峻挑战。传统的DRAM性能提升速度远远慢于处理器,造成了所谓的“内存墙”问题。在这种背景下,HBM以其高带宽、低功耗和3D堆叠技术,成为解决内存瓶颈的重要路径。
2. HBM技术特点
HBM通过TSV(Through-Silicon Via,硅通孔)技术实现多个DRAM芯片的垂直堆叠,并与GPU等处理器紧密集成。其主要技术优势包括:
- 高带宽:HBM通过增加数据通道和提高I/O速率,显著提升了数据传输带宽。例如,最新的HBM3带宽达到819GB/s,比HBM1提高了6倍多。
- 低功耗ÿ