基于YOLOv11模型的PCB缺陷分割与识别:在Unity引擎中的应用与优化

在这里插入图片描述

基于YOLOv11模型的PCB缺陷分割与识别:在Unity引擎中的应用与优化

摘要

随着工业自动化和智能制造的快速发展,PCB(印刷电路板)缺陷检测成为了智能制造领域中的一个重要研究方向。YOLO(You Only Look Once)系列模型,作为一种高效的目标检测技术,在图像处理领域得到了广泛应用。本文基于YOLOv11模型,提出了一种改进的缺陷检测与分割方法,并将其成功应用于Unity引擎中,结合Sentis框架进行PCB缺陷的自动化检测与分析。通过对YOLOv11模型的改进,本文提升了小尺寸缺陷的检测精度,并优化了分割掩码的生成过程。实验结果表明,改进后的模型在检测精度和实时性方面均取得了显著提升。
在这里插入图片描述

1. 引言

PCB缺陷检测是电子制造业中一个关键的质量控制环节,传统的人工检测方法效率低且容易出错,不能满足高速、大规模生产的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

空间机器人

您的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值