基于YOLOv11模型的PCB缺陷分割与识别:在Unity引擎中的应用与优化
摘要
随着工业自动化和智能制造的快速发展,PCB(印刷电路板)缺陷检测成为了智能制造领域中的一个重要研究方向。YOLO(You Only Look Once)系列模型,作为一种高效的目标检测技术,在图像处理领域得到了广泛应用。本文基于YOLOv11模型,提出了一种改进的缺陷检测与分割方法,并将其成功应用于Unity引擎中,结合Sentis框架进行PCB缺陷的自动化检测与分析。通过对YOLOv11模型的改进,本文提升了小尺寸缺陷的检测精度,并优化了分割掩码的生成过程。实验结果表明,改进后的模型在检测精度和实时性方面均取得了显著提升。
1. 引言
PCB缺陷检测是电子制造业中一个关键的质量控制环节,传统的人工检测方法效率低且容易出错,不能满足高速、大规模生产的