高等数学公式大全(二)

一元函数积分学的概念与计算

章节概括

  • 概念
    • 不定积分
      • 原函数与不定积分
      • 原函数(不定积分存在定理)
    • 定积分
      • 定积分概念
      • 定积分存在定理
      • 定积分性质
    • 变限积分
      • 变限积分的概念
      • 变限积分的性质
      • 变限积分的求导公式
    • 反常积分
      • 反常积分的概念的通俗理解
      • 无穷区间上反常积分的概念与敛散性
      • 无界函数上反常积分的概念与敛散性
      • 判敛
  • 计算
    • 基本积分公式
    • 凑微分法
    • 换元法
    • 分部积分法
    • 有理函数积分

不定积分

原函数与不定积分

设函数 f ( x ) f(x) f(x)定义在某区间 I I I上,若存在可导函数 F ( x ) F(x) F(x),对于该区间上任意一点都有 F ′ ( x ) = f ( x ) F'(x) = f(x) F(x)=f(x)成立

则称 F ( x ) F(x) F(x) f ( x ) f(x) f(x)在区间 I I I上的一个原函数,称
∫ f ( x ) d x = F ( x ) + C \int f(x) dx = F(x) + C f(x)dx=F(x)+C
f ( x ) f(x) f(x)区间 I I I上的不定积分

原函数(不定积分)存在定理

  1. 连续函数 f ( x ) f(x) f(x)必有原函数 F ( x ) F(x) F(x)
  2. 含有第一类间断点无穷间断点的函数 f ( x ) f(x) f(x)在包含该间断点的区间内必没有原函数 F ( x ) F(x) F(x)
  3. 含有振荡间断点的函数可能有原函数

不定积分的基本性质

[ ∫ f ( x ) d x ] ′ = f ( x ) [\int f(x)dx]^{\prime} = f(x) [f(x)dx]=f(x)

d ∫ f ( x ) d x = f ( x ) d x d \int f(x)dx = f(x)dx df(x)dx=f(x)dx

∫ f ′ ( x ) d x = ∫ d f ( x ) = f ( x ) + C \int f^{\prime}(x)dx = \int df(x) = f(x)+C f(x)dx=df(x)=f(x)+C

∫ k f ( x ) d x = k ∫ f ( x ) d x ( k ≠ 0 为常数 ) \int kf(x)dx = k \int f(x)dx (k \neq 0为常数) kf(x)dx=kf(x)dx(k=0为常数)

∫ [ f ( x ) ± g ( x ) ] d x = ∫ f ( x ) d x ± ∫ g ( x ) d x \int[f(x)\pm g(x)]dx = \int f(x)dx \pm \int g(x)dx [f(x)±g(x)]dx=f(x)dx±g(x)dx

积分公式

∫ x a d x = 1 1 + a x 1 + a + C ( a ≠ − 1 ) \int x^adx = \frac{1}{1+a}x^{1+a}+C(a\neq-1) xadx=1+a1x1+a+C(a=1)

∫ 1 x d x = I n ∣ x ∣ + C \int\frac{1}{x}dx = In|x|+C x1dx=Inx+C

∫ 1 x d x = 2 x + C \int \frac{1}{\sqrt{x}} dx = 2\sqrt{x} + C x 1dx=2x +C

∫ a x d x = a x I n a + C \int a^x dx = \frac{a^x}{Ina}+C axdx=Inaax+C

∫ e x d x = e x + C \int e^xdx = e^x+C exdx=ex+C

∫ c o s x d x = s i n x + C \int cosx dx = sinx+C cosxdx=sinx+C

∫ 1 1 + c o s x d x = t a n x 2 + C \int \frac{1}{1+cosx}dx =tan\frac{x}{2}+C 1+cosx1dx=tan2x+C

∫ s i n x d x = − c o s x + C \int sinxdx = -cosx+C sinxdx=cosx+C

∫ s e c x d x = I n ∣ s e c x + t a n x ∣ + C \int secx dx = In|secx + tanx|+C secxdx=Insecx+tanx+C

∫ c s c x d x = I n ∣ c s c x − c o t x ∣ + C \int cscx dx = In|cscx - cotx|+C cscxdx=Incscxcotx+C

∫ s e c 2 x d x = ∫ 1 c o s 2 x d x = t a n x + C \int sec^2xdx = \int \frac{1}{cos^2x}dx = tanx +C sec2xdx=cos2x1dx=tanx+C

∫ c s c 2 x d x = ∫ 1 s i n 2 d x = − c o t x + C \int csc^2xdx = \int \frac{1}{sin^2}dx = -cotx + C csc2xdx=sin21dx=cotx+C

∫ s e c x t a n x d x = s e c x + C \int secx tanx dx = secx + C secxtanxdx=secx+C

∫ c s c x c o t x d x = − c s c x + C \int cscx cotxdx = -cscx +C cscxcotxdx=cscx+C

∫ 1 a 2 + x 2 d x = 1 a a r c t a n x a + C \int \frac{1}{a^2+x^2}dx = \frac{1}{a}arctan\frac{x}{a}+C a2+x21dx=a1arctanax+C

∫ 1 1 + x 2 d x = a r c t a n x + C \int \frac{1}{1+x^2}dx = arctanx + C 1+x21dx=arctanx+C

∫ 1 a 2 − x 2 d x = a r c s i n x a + C \int \frac{1}{\sqrt{a^2-x^2}}dx = arcsin\frac{x}{a} + C a2x2 1dx=arcsinax+C

∫ 1 1 − x 2 d x = a r c s i n x + C \int \frac{1}{\sqrt{1-x^2}}dx = arcsinx + C 1x2 1dx=arcsinx+C

∫ 1 a 2 − x 2 d x = 1 2 a I n ∣ a + x a − x ∣ + C \int \frac{1}{a^2-x^2}dx = \frac{1}{2a}In|\frac{a+x}{a-x}|+C a2x21dx=2a1Inaxa+x+C

∫ 1 x 2 ± a 2 d x = I n ∣ x + x 2 ± a 2 ∣ + C \int \frac{1}{\sqrt{x^2 \pm a^2}}dx = In|x+\sqrt{x^2 \pm a^2}|+C x2±a2 1dx=Inx+x2±a2 +C

凑微分法

∫ f [ φ ( x ) ] φ ′ ( x ) d x = ∫ f [ φ ( x ) ] d φ ( x ) = ∫ f ( u ) d u [ 令 φ ( x ) = u ] \int f[\varphi(x)]\varphi ^{\prime}(x)dx = \int f[\varphi(x)]d\varphi(x) = \int f(u)du[令\varphi(x) = u] f[φ(x)]φ(x)dx=f[φ(x)]dφ(x)=f(u)du[φ(x)=u]

分部积分法

∫ u d v = u v − ∫ v d u \int udv = uv - \int vdu udv=uvvdu

定积分

定积分概念

若函数 f ( x ) f(x) f(x)在区间 [ a , b ] [a,b] [a,b]有界

( a , b ) (a,b) (a,b)上任取 n − 1 n -1 n1个分点 x i ( i = 1 , 2 , 3 , ⋯   , n − 1 ) x_i(i = 1,2,3,\cdots,n-1) xi(i=1,2,3,,n1)

定义 x 0 = a x_0 = a x0=a x n = b x_n = b xn=b,且 a = x 0 < x 1 < x 2 < x 3 < ⋯ < x n − 1 < x n = b a = x_0 < x_1 < x_2 < x_3 < \cdots < x_{n-1} < x_n = b a=x0<x1<x2<x3<<xn1<xn=b,记 Δ x k = x k − x k − 1 , k = 1 , 2 , 3 , ⋯   , n \Delta x_k = x_k - x_{k-1},k = 1,2,3,\cdots,n Δxk=xkxk1,k=1,2,3,,n

并取任意一点 ξ k ∈ [ x k − 1 , x k ] \xi_k \in [x_{k-1},x_k] ξk[xk1,xk],记 λ = max ⁡ 1 ≤ k ≤ n { Δ x k } \lambda = \max_{1 \le k \le n}\{\Delta x_k\} λ=max1kn{Δxk}

若当 λ → 0 \lambda \rightarrow 0 λ0时,极限 lim ⁡ λ → 0 ∑ k = 1 n f ( ξ k ) Δ x k \lim_{\lambda \rightarrow 0} \sum^n_{k = 1}f(\xi_k) \Delta x_k limλ0k=1nf(ξk)Δxk存在分点 x i x_i xi及其点 ξ k \xi_k ξk的取法无关

则称函数 f ( x ) f(x) f(x)在区间 [ a , b ] [a,b] [a,b]可积,即
∫ a b f ( x ) d x = lim ⁡ λ = 0 ∑ k = 1 n f ( ξ k ) Δ x k \int^b_a f(x)dx = \lim_{\lambda = 0} \sum^n_{k = 1}f(\xi_k) \Delta x_k abf(x)dx=λ=0limk=1nf(ξk)Δxk

定积分定义

∫ a b f ( x ) d x = lim ⁡ n → + ∞ ∑ i = 1 n f [ a + i n ( b − a ) ] b − 1 n \int^b_af(x)dx = \lim_{n \rightarrow +\infty} \sum^n_{i=1}f[a+\frac{i}{n}(b-a)]\frac{b-1}{n} abf(x)dx=n+limi=1nf[a+ni(ba)]nb1

∫ 0 1 f ( x ) d x = lim ⁡ n → + ∞ 1 n ∑ i = 1 n f ( i n ) \int^1_0f(x)dx = \lim_{n \rightarrow +\infty} \frac{1}{n}\sum^n_{i=1}f(\frac{i}{n}) 01f(x)dx=n+limn1i=1nf(ni)

定积分存在性定理

  • 定积分存在的充分条件

    • f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,则 ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx存在
    • f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上单调,则 ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx存在
    • f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上有界,且只有有限个间断点,则 ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx存在
  • 定积分存在的必要条件

    • ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx存在,则 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上必有界

偶倍奇零

∫ − a a f ( x ) d x = 2 ∫ 0 a f ( x ) d x , f ( x ) 为偶函数 \int _{-a}^a f(x)dx = 2\int _0^a f(x)dx ,f(x)为偶函数 aaf(x)dx=20af(x)dx,f(x)为偶函数

∫ − a a f ( x ) d x = 0 , f ( x ) 为奇函数 \int _{-a}^a f(x)dx = 0,f(x)为奇函数 aaf(x)dx=0,f(x)为奇函数

定积分性质

区间长度
∫ a b d x = b − a = L ,其中 a < b , L 为区间 [ a , b ] 的长度 \int_{a}^{b} dx = b-a = L,其中a<b,L为区间[a,b]的长度 abdx=ba=L,其中a<bL为区间[a,b]的长度
积分的线性性质
∫ a b [ k 1 f ( x ) ± k 2 g ( x ) ] d x = k 1 ∫ a b f ( x ) d x ± k 2 ∫ b a g ( x ) d x \int_{a}^{b} [k_1f(x) \pm k_2g(x)]dx = k_1\int_{a}^{b} f(x)dx \pm k_2\int_{b}^{a} g(x)dx ab[k1f(x)±k2g(x)]dx=k1abf(x)dx±k2bag(x)dx

积分的可加(拆)性
∫ b a f ( x ) d x = ∫ c a f ( x ) d x + ∫ b c f ( x ) d x \int_{b}^{a} f(x)dx = \int_{c}^{a} f(x)dx + \int_{b}^{c} f(x)dx baf(x)dx=caf(x)dx+bcf(x)dx

积分的保号性

若在区间 [ a , b ] [a,b] [a,b] f ( x ) ≤ g ( x ) f(x) \le g(x) f(x)g(x),则有
∫ a b f ( x ) d x ≤ ∫ a b g ( x ) d x \int^b_a f(x)dx \le \int^b_a g(x)dx abf(x)dxabg(x)dx
特殊地,有:
∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x |\int^b_a f(x)dx| \le \int^b_a |f(x)|dx abf(x)dxabf(x)dx
估值定理

设M,m分别是 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上的最大值和最小值, L L L为区间 [ a , b ] [a,b] [a,b]的长度,则
m L ≤ ∫ a b f ( x ) d x ≤ M L mL \le \int^b_a f(x)dx \le ML mLabf(x)dxML

∫ b a f ( x ) d x = − ∫ a b f ( x ) d x \int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx baf(x)dx=abf(x)dx

设 f ( x ) ≥ 0 ( a ≤ x ≤ b ) , ∫ b a f ( x ) d x ≥ 0 设f(x) \ge 0(a \le x \le b),\int_{b}^{a} f(x)dx \ge 0 f(x)0(axb),baf(x)dx0

设 f ( x ) ≥ g ( x ) ( a ≤ x ≤ b ) , ∫ b a f ( x ) d x ≥ ∫ b a g ( x ) d x 设f(x) \ge g(x)(a \le x \le b),\int_{b}^{a} f(x)dx \ge \int_{b}^{a} g(x)dx f(x)g(x)(axb),baf(x)dxbag(x)dx

f(x)中含三角函数的积分的一些常用结论

原链接:含三角函数的积分的一些常用结论 - 知乎 (zhihu.com)

∫ 0 π 2 f ( s i n x ) d x = ∫ 0 π 2 f ( c o s x ) d x \int_0^{\frac{\pi}{2}} f(sinx)dx = \int_0^{\frac{\pi}{2}} f(cosx)dx 02πf(sinx)dx=02πf(cosx)dx

∫ 0 π x f ( s i n x ) d x = π 2 ∫ 0 π f ( s i n x ) d x = π ∫ 0 π 2 f ( s i n x ) d x \int_0^\pi xf(sinx)dx = \frac{\pi}{2}\int_0^\pi f(sinx)dx = \pi\int_0^{\frac{\pi}{2}} f(sinx)dx 0πxf(sinx)dx=2π0πf(sinx)dx=π02πf(sinx)dx

∫ 0 π f ( s i n x ) d x = 2 ∫ 0 π 2 f ( s i n x ) d x \int_0^\pi f(sinx)dx = 2\int_0^{\frac{\pi}{2}} f(sinx)dx 0πf(sinx)dx=202πf(sinx)dx

∫ 0 π 2 x ( f ( s i n x ) + f ( c o s x ) ) d x = π 2 ∫ 0 π 2 f ( s i n x ) d x \int_0^{\frac{\pi}{2}} x(f(sinx)+f(cosx))dx = \frac{\pi}{2}\int_0^{\frac{\pi}{2}} f(sinx)dx 02πx(f(sinx)+f(cosx))dx=2π02πf(sinx)dx

华里士公式: ∫ 0 π 2 s i n n x d x = ∫ 0 π 2 c o s n x d x { n − 1 n ⋅ n − 3 n − 2 ⋯ 1 2 ⋅ π 2 ( n 为偶数 ) n − 1 n ⋅ n − 3 n − 2 ⋯ 3 2 ⋅ 1 ( n 为奇数 ) 也叫做点火公式,例: ∫ 0 π 2 s i n 10 d x = 9 10 ⋅ 7 8 ⋅ 5 6 ⋅ 3 4 ⋅ 1 2 ⋅ π 2 ( 点火成功 ) ∫ 0 π 2 c o s 9 d x = 8 9 ⋅ 6 7 ⋅ 4 5 ⋅ 2 3 ( 点火失败 ) \begin{align} 华里士公式: \int_0^{\frac{\pi}{2}} sin^nxdx = \int_0^{\frac{\pi}{2}} cos^nxdx \\ \left\{\begin{matrix} \frac{n-1}{n}\cdot\frac{n-3}{n-2}\cdots\frac{1}{2}\cdot \frac{\pi}{2} (n为偶数)\\ \frac{n-1}{n}\cdot\frac{n-3}{n-2}\cdots\frac{3}{2}\cdot 1 (n为奇数) \end{matrix}\right.\\ 也叫做点火公式,例:\\ \int_0^{\frac{\pi}{2}} sin^{10}dx = \frac{9}{10}\cdot\frac{7}{8}\cdot\frac{5}{6}\cdot\frac{3}{4}\cdot\frac{1}{2}\cdot\frac{\pi}{2}(点火成功)\\ \int_0^{\frac{\pi}{2}} cos^{9}dx = \frac{8}{9}\cdot\frac{6}{7}\cdot\frac{4}{5}\cdot\frac{2}{3}(点火失败)\\ \end{align} 华里士公式:02πsinnxdx=02πcosnxdx{nn1n2n3212π(n为偶数)nn1n2n3231(n为奇数)也叫做点火公式,例:02πsin10dx=109876543212π(点火成功)02πcos9dx=98765432(点火失败)

牛顿-莱布尼茨公式

∫ b a f ( x ) d x = F ( b ) − F ( a ) = F ( x ) ∣ a b , F ( x ) 是 f ( x ) 的原函数 \int _b^af(x)dx = F(b) - F(a) = F(x)|_a^b,F(x)是f(x)的原函数 baf(x)dx=F(b)F(a)=F(x)ab,F(x)f(x)的原函数

变限积分

性质

  1. 函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上可积,则函数 F ( x ) = ∫ a x f ( t ) d t F(x) = \int^x_a f(t)dt F(x)=axf(t)dt [ a , b ] [a,b] [a,b]上连续
  2. 函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,则函数 F ( x ) = ∫ a x f ( t ) d t F(x) = \int^x_a f(t)dt F(x)=axf(t)dt [ a , b ] [a,b] [a,b]上可导

求导公式

Φ ′ ( x ) = [ ∫ a x f ( t ) d t ] ′ = f ( x ) \Phi ^{\prime}(x) = [\int^x_a f(t)dt]^{\prime} = f(x) Φ(x)=[axf(t)dt]=f(x)

[ ∫ λ ( x ) φ ( x ) f ( t ) d t ] ′ = f ( φ ( x ) ) φ ′ ( x ) − f ( λ ( x ) ) λ ′ ( x ) [\int^{\varphi(x)}_{\lambda(x)}f(t)dt]^{\prime} = f(\varphi(x))\varphi^\prime(x)-f(\lambda(x))\lambda^\prime(x) [λ(x)φ(x)f(t)dt]=f(φ(x))φ(x)f(λ(x))λ(x)

反常积分

反常积分又叫广义积分,是对普通定积分的推广,指含有无穷上限/下限,或者被积函数含有瑕点的积分,前者称为无穷限广义积分,后者称为瑕积分(又称无界函数的反常积分)。

如果函数f(x)在点a的任意一个去心邻域内无界,那么点a称为函数f(x)的瑕点(也称无界间断点)。无界函数的反常积分又称瑕积分。广义积分积分限中使积分函数不存在的点。

形式:
∫ 1 + ∞ 1 x 2 − x d x 或者 ∫ 0 1 1 x − x 2 \int_1^{+\infty} \frac{1}{\sqrt{x^2 - x}} dx或者\int_0^1 \frac{1}{\sqrt{x - x^2}} 1+x2x 1dx或者01xx2 1

无穷区间积分的敛散性判别法

∫ a + ∞ f ( x ) d x = lim ⁡ t → + ∞ ∫ a t f ( x ) d x \int_a^{+\infty} f(x) dx = \lim_{t \rightarrow +\infty}\int_a^{t} f(x) dx a+f(x)dx=t+limatf(x)dx

若上述极限存在,则反常积分收敛,否则称为发散

例:
∫ 0 + ∞ e − x d x = lim ⁡ t → + ∞ ∫ 0 t e − x d x = lim ⁡ t → + ∞ ( 1 − e − t ) = 1 ( 该积分收敛 ) \int_0^{+\infty} e^{-x} dx = \lim_{t \rightarrow +\infty} \int_0^{t} e^{-x} dx = \lim_{t \rightarrow +\infty} (1-e^{-t}) = 1(该积分收敛) 0+exdx=t+lim0texdx=t+lim(1et)=1(该积分收敛)

∫ − ∞ b f ( x ) d x = lim ⁡ t → − ∞ ∫ t b f ( x ) d x \int_{-\infty}^b f(x) dx = \lim_{t \rightarrow -\infty}\int_t^{b} f(x) dx bf(x)dx=tlimtbf(x)dx

若上述极限存在,则反常积分收敛,否则称为发散
∫ − ∞ + ∞ f ( x ) d x = ∫ − ∞ c f ( x ) d x + ∫ c + ∞ f ( x ) d x \int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{c} f(x) dx + \int_{c}^{+\infty} f(x) dx +f(x)dx=cf(x)dx+c+f(x)dx
若右边两个反常积分都收敛,则反常积分收敛,否则称为发散

无穷区间的反常积分,在 p > 1 p > 1 p>1时收敛,在 p ≤ 1 p \le 1 p1时发散
∫ 1 + ∞ 1 x p d x \int_1^{+\infty} \frac{1}{x^p}dx 1+xp1dx
无界函数的反常积分,在 0 < p < 1 0 < p < 1 0<p<1时收敛,在 p ≥ 1 p \ge 1 p1时发散
∫ 0 1 1 x p d x , p > 0 ,奇点 x = 0 \int_0^1 \frac{1}{x^p}dx,p>0,奇点 x = 0 01xp1dxp>0,奇点x=0

无界函数的反常积分的概念与敛散性

若b是 f ( x ) f(x) f(x)的唯一瑕点,则无界函数 f ( x ) f(x) f(x)的反常积分 ∫ a b f ( x ) d x \int_a^b f(x) dx abf(x)dx定义为
∫ a b f ( x ) d x = lim ⁡ ξ → 0 + ∫ a b − ξ f ( x ) d x \int_a^b f(x) dx = \lim_{\xi \rightarrow 0^+}\int^{b -\xi}_a f(x) dx abf(x)dx=ξ0+limabξf(x)dx
若上述极限存在,则称反常积分 ∫ a b f ( x ) d x \int_a^b f(x) dx abf(x)dx收敛,否则称为发散

若a是 f ( x ) f(x) f(x)的唯一瑕点,则无界函数 f ( x ) f(x) f(x)的反常积分 ∫ a b f ( x ) d x \int_a^b f(x) dx abf(x)dx定义为
∫ a b f ( x ) d x = lim ⁡ ξ → 0 − ∫ a − ξ b f ( x ) d x \int_a^b f(x) dx = \lim_{\xi \rightarrow 0^-}\int^{b}_{a -\xi} f(x) dx abf(x)dx=ξ0limaξbf(x)dx
若上述极限存在,则称反常积分 ∫ a b f ( x ) d x \int_a^b f(x) dx abf(x)dx收敛,否则称为发散

c ∈ ( a , b ) c \in (a,b) c(a,b) f ( x ) f(x) f(x)的唯一瑕点,则无界函数 f ( x ) f(x) f(x)的反常积分 ∫ a b f ( x ) d x \int_a^b f(x) dx abf(x)dx定义为
∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx abf(x)dx=acf(x)dx+cbf(x)dx
若右边两个反常积分都收敛,则反常积分收敛,否则称为发散

无穷区间积分比较判别法

设 f ( x ) , g ( x ) 在 [ a , + ∞ ) 上连续,且 0 ≤ f ( x ) ≤ g ( x ) ,则 设f(x),g(x)在[a,+\infty)上连续,且0 \le f(x) \le g(x),则 f(x),g(x)[a,+)上连续,且0f(x)g(x),则

∫ a + ∞ g ( x ) d x 收敛 → ∫ a + ∞ f ( x ) d x 收敛 ( 大收敛小收敛 ) \int_a^{+\infty} g(x) dx收敛 \rightarrow \int_a^{+\infty} f(x) dx 收敛(大收敛小收敛) a+g(x)dx收敛a+f(x)dx收敛(大收敛小收敛)

∫ a + ∞ f ( x ) d x 发散 → ∫ a + ∞ g ( x ) d x 发散 ( 小发散大发散 ) \int_a^{+\infty} f(x) dx发散 \rightarrow \int_a^{+\infty} g(x) dx 发散(小发散大发散) a+f(x)dx发散a+g(x)dx发散(小发散大发散)

无穷区间积分比较判别法的极限形式

设 f ( x ) , g ( x ) 在 [ a , + ∞ ) 上非负连续, lim ⁡ x → + ∞ f ( x ) g ( x ) = λ ,则 设f(x),g(x)在[a,+\infty)上非负连续,\lim_{x \rightarrow +\infty} \frac{f(x)}{g(x)} = \lambda,则 f(x),g(x)[a,+)上非负连续,x+limg(x)f(x)=λ,则

当 λ > 0 时 , ∫ a + ∞ f ( x ) d x 与 ∫ a + ∞ g ( x ) d x 同敛散 当 \lambda > 0 时,\int_a^{+\infty} f(x) dx 与 \int_a^{+\infty} g(x) dx 同敛散 λ>0,a+f(x)dxa+g(x)dx同敛散

当 λ = 0 时 , ∫ a + ∞ g ( x ) d x 收敛 → ∫ a + ∞ f ( x ) d x 收敛 当 \lambda = 0 时,\int_a^{+\infty} g(x) dx收敛 \rightarrow \int_a^{+\infty} f(x) dx 收敛 λ=0,a+g(x)dx收敛a+f(x)dx收敛

当 λ = + ∞ 时 , ∫ a + ∞ g ( x ) d x 发散 → ∫ a + ∞ f ( x ) d x 发散 当 \lambda = +\infty 时,\int_a^{+\infty} g(x) dx发散 \rightarrow \int_a^{+\infty} f(x) dx 发散 λ=+,a+g(x)dx发散a+f(x)dx发散

无界函数积分的敛散性判别法

∫ a b f ( x ) d x = lim ⁡ t → + a + ∫ t b f ( x ) d x \int_a^b f(x) dx = \lim_{t \rightarrow +a^+}\int_t^b f(x) dx abf(x)dx=t+a+limtbf(x)dx

P 积分 : ∫ a b 1 ( x − a ) p d x ∫ a b 1 ( b − x ) p d x ( p < 1 时收敛 ; p ≥ 1 发散 ; a > 0 ) P积分: \int_a^b \frac{1}{(x-a)^p} dx\int_a^b \frac{1}{(b-x)^p} dx(p < 1时收敛;p \ge 1发散;a>0) P积分:ab(xa)p1dxab(bx)p1dx(p<1时收敛;p1发散;a>0)

无界函数积分比较判别法

设 f ( x ) , g ( x ) 在 ( a , b ] 上连续,且 0 ≤ f ( x ) ≤ g ( x ) ,则 设f(x),g(x)在(a,b]上连续,且0 \le f(x) \le g(x),则 f(x),g(x)(a,b]上连续,且0f(x)g(x),则

∫ a + ∞ g ( x ) d x 收敛 → ∫ a + ∞ f ( x ) d x 收敛 ( 大收敛小收敛 ) \int_a^{+\infty} g(x) dx收敛 \rightarrow \int_a^{+\infty} f(x) dx 收敛(大收敛小收敛) a+g(x)dx收敛a+f(x)dx收敛(大收敛小收敛)

∫ a + ∞ f ( x ) d x 发散 → ∫ a + ∞ g ( x ) d x 发散 ( 小发散大发散 ) \int_a^{+\infty} f(x) dx发散 \rightarrow \int_a^{+\infty} g(x) dx 发散(小发散大发散) a+f(x)dx发散a+g(x)dx发散(小发散大发散)

无界函数积分比较判别法的极限形式

设 f ( x ) , g ( x ) 在 ( a , b ] 上非负连续, lim ⁡ x → a + f ( x ) g ( x ) = λ ,则 设f(x),g(x)在(a,b]上非负连续,\lim_{x \rightarrow a^+} \frac{f(x)}{g(x)} = \lambda,则 f(x),g(x)(a,b]上非负连续,xa+limg(x)f(x)=λ,则

当 λ > 0 时 , ∫ a + ∞ f ( x ) d x 与 ∫ a + ∞ g ( x ) d x 同敛散 当 \lambda > 0 时,\int_a^{+\infty} f(x) dx 与 \int_a^{+\infty} g(x) dx 同敛散 λ>0,a+f(x)dxa+g(x)dx同敛散

当 λ = 0 时 , ∫ a + ∞ g ( x ) d x 收敛 → ∫ a + ∞ f ( x ) d x 收敛 当 \lambda = 0 时,\int_a^{+\infty} g(x) dx收敛 \rightarrow \int_a^{+\infty} f(x) dx 收敛 λ=0,a+g(x)dx收敛a+f(x)dx收敛

当 λ = + ∞ 时 , ∫ a + ∞ g ( x ) d x 发散 → ∫ a + ∞ f ( x ) d x 发散 当 \lambda = +\infty 时,\int_a^{+\infty} g(x) dx发散 \rightarrow \int_a^{+\infty} f(x) dx 发散 λ=+,a+g(x)dx发散a+f(x)dx发散

有理函数的积分

定义

形如 ∫ P n ( x ) Q m ( x ) d x ( n < m ) \int \frac{P_n(x)}{Q_m(x)}dx(n < m) Qm(x)Pn(x)dx(n<m)的积分称为有理函数的积分,其中 P n ( x ) , Q m ( x ) P_n(x),Q_m(x) Pn(x),Qm(x)分别是 x x x n n n次多项式和 m m m次多项式

换元积分法

换元必换限,不必代回原变量
例题求解: ∫ 0 I n 2 e x − 1 d x 令 e x − 1 = u , 则 x = I n ( u 2 + 1 ) , d x = 2 u 1 + u 2 d u 当 x = 0 时 , u = 0 ( 下限 ) 当 x = I n 2 时 , u = 1 ( 上限 ) 原式 = ∫ 0 1 u 2 u 1 + u 2 d u = 2 ∫ 0 1 u 2 + 1 − 1 1 + u 2 d u = 2 ∫ 0 1 ( 1 − 1 1 + u 2 ) d u = 2 ( u − a r c t a n u ) ∣ 0 1 = 2 ( 1 − π 4 ) = 0.4292 \begin{align} 例题求解:\int _0^{In2} \sqrt{e^x-1}dx \\ 令 \sqrt{e^x-1} = u , 则x = In(u^2+1), dx = \frac{2u}{1+u^2}du \\ 当x = 0时,u = 0(下限) \\ 当x = In2时,u = 1(上限) \\ 原式 = \int _0^1u\frac{2u}{1+u^2}du = 2 \int _0^1 \frac{u^2+1-1}{1+u^2}du \\ = 2 \int _0^1(1-\frac{1}{1+u^2})du = 2(u-arctanu) |_0^1 \\ = 2(1 - \frac{π}{4}) = 0.4292 \end{align} 例题求解:0In2ex1 dxex1 =u,x=In(u2+1),dx=1+u22udux=0,u=0(下限)x=In2,u=1(上限)原式=01u1+u22udu=2011+u2u2+11du=201(11+u21)du=2(uarctanu)01=2(14π)=0.4292

分部积分法

∫ a b u d v = u v ∣ a b − ∫ a b v d u \int _a^b udv = uv|_a^b - \int _a^bvdu abudv=uvababvdu

一元函数微分学的几何应用

假设以下曲线连续

定积分表达和计算平面图形的面积

曲线 y = y 1 ( x ) y = y_1(x) y=y1(x) y = y 2 ( x ) y = y_2(x) y=y2(x) x = a , x = b ( a < b ) x = a,x =b(a<b) x=a,x=b(a<b)所围成的平面图形的面积
S = ∫ a b ∣ y 1 ( x ) − y 2 ( x ) ∣ d x S = \int^b_a |y_1(x) - y_2(x)|dx S=aby1(x)y2(x)dx
曲线 r = r 1 ( θ ) r = r_1(\theta) r=r1(θ) r = r 2 ( θ ) r = r_2(\theta) r=r2(θ)及两射线 θ = α \theta = \alpha θ=α θ = β ( 0 < β − α ≤ 2 π ) \theta = \beta(0 < \beta - \alpha \le 2\pi) θ=β(0<βα2π)所围成的曲边扇形的面积
S = 1 2 ∫ α β ∣ r 1 2 ( θ ) − r 2 2 ( θ ) ∣ d θ S = \frac{1}{2}\int^\beta_\alpha |r^2_1(\theta) - r^2_2(\theta)| d\theta S=21αβr12(θ)r22(θ)dθ

定积分表达和计算旋转体的体积

曲线 y = y ( x ) y = y(x) y=y(x) x = a , x = b ( a < b ) x = a,x =b(a<b) x=a,x=b(a<b)及x轴所围成的曲边梯形绕x轴旋转一周所得到的旋转体的体积
V x = ∫ a b π y 2 ( x ) d x V_x = \int^b_a \pi y^2(x)dx Vx=abπy2(x)dx
曲线 y = y ( x ) y = y(x) y=y(x) x = a , x = b ( a < b ) x = a,x =b(a<b) x=a,x=b(a<b)及x轴所围成的曲边梯形绕y轴旋转一周所得到的旋转体的体积
V y = 2 π ∫ a b x ∣ y ( x ) ∣ d x V_y = 2\pi \int^b_a x|y(x)|dx Vy=2πabxy(x)dx
曲线 y = y 1 ( x ) ≥ 0 y = y_1(x) \ge 0 y=y1(x)0 y = y 2 ( x ) ≥ 0 y = y_2(x) \ge 0 y=y2(x)0 x = a , x = b ( a < b ) x = a,x =b(a<b) x=a,x=b(a<b)所围成的平面图形绕x轴旋转一周所得到的旋转体体积
V x = π ∫ a b ∣ y 1 2 ( x ) − y 2 2 ( x ) ∣ d x V_x = \pi \int^b_a |y_1^2(x) - y_2^2(x)|dx Vx=πaby12(x)y22(x)dx
曲线 y = y 1 ( x ) ≥ 0 y = y_1(x) \ge 0 y=y1(x)0 y = y 2 ( x ) ≥ 0 y = y_2(x) \ge 0 y=y2(x)0 x = a , x = b ( a < b ) x = a,x =b(a<b) x=a,x=b(a<b)所围成的平面图形绕y轴旋转一周所得到的旋转体体积
V y = 2 π ∫ a b x ∣ y 1 ( x ) − y 2 ( x ) ∣ d x V_y = 2\pi \int^b_a x|y_1(x) - y_2(x)|dx Vy=2πabxy1(x)y2(x)dx

定积分表达和计算函数的平均值

x ∈ [ a , b ] x \in [a,b] x[a,b],函数 y ( x ) y(x) y(x) [ a , b ] [a,b] [a,b]上的平均值为
y ˉ = 1 b − a ∫ a b y ( x ) d x \bar{y} = \frac{1}{b -a}\int^b_a y(x)dx yˉ=ba1aby(x)dx

函数切线方程与法线方程的求解

初等函数切线方程与法线方程公式

函数图形在某点 ( a , b ) (a,b) (a,b)的切线方程为 y = k x + b y = kx + b y=kx+b,k为斜率,b为截距

法线方程为 y = m x + c y = mx + c y=mx+c m = − 1 k m = -\frac{1}{k} m=k1,m为法线斜率,c为法线截距

导数求解切线方程与法线方程

函数 y = f ( x ) y = f(x) y=f(x)在点 x 0 x_0 x0处的导数 f ′ ( x 0 ) f'(x_0) f(x0)在几何上表示曲线 y = f ( x ) y = f(x) y=f(x)在点 M ( x 0 , f ( x 0 ) ) M(x_0,f(x_0)) M(x0,f(x0))处的切线的斜率

切线方程: y − y 0 = f ′ ( x 0 ) ( x − x 0 ) y - y_0 = f'(x_0)(x - x_0) yy0=f(x0)(xx0),当 x = 0 x = 0 x=0时,截距为: y = y 0 − x 0 f ′ ( x 0 ) y = y_0 - x_0f'(x_0) y=y0x0f(x0)

法线方程: y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 ) y - y_0 = -\frac{1}{f'(x_0)}(x - x_0) yy0=f(x0)1(xx0),当 y = 0 y = 0 y=0时,截距为: x = x 0 + y 0 f ′ ( x 0 ) x = x_0 + y_0f'(x_0) x=x0+y0f(x0)

切点: M ( x 0 , y 0 ) M(x_0,y_0) M(x0,y0)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值