高等数学公式大全(三)

多元函数微分学

章节概括

  • 基本概念
    • 平面点集的基本概念
    • 极限
    • 连续
    • 偏导数
    • 可微
    • 偏导数的连续性
  • 多元函数微分法则
    • 链式求导规则
    • 隐函数存在定理(公式法)
  • 多元函数的极值与最值
    • 概念
    • 无条件极值
      • 隐函数
      • 显函数
    • 条件极值与拉格朗日乘数法
      • 闭区间边界上的最值
      • 闭区域上的最值

极限

设二元函数 f ( P ) = f ( x , y ) f(P) = f(x,y) f(P)=f(x,y)的定义域为D, P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)是D的聚点

如果存在常数A,对于任意给定的正数 ϵ \epsilon ϵ,总存在正数 δ \delta δ,使得当点 P ( x , y ) ∈ D ∩ U ∘ ( P 0 , δ ) P(x,y) \in D \cap U^{\circ}(P_0,\delta ) P(x,y)DU(P0,δ)时,都有 ∣ f ( x , y ) − A ∣ < ϵ |f(x,y) - A| < \epsilon f(x,y)A<ϵ成立

那么就称常数A为函数 f ( x , y ) f(x,y) f(x,y) ( x , y ) → ( x 0 , y 0 ) (x,y) \rightarrow (x_0,y_0) (x,y)(x0,y0)的极限,记作
lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = A 或 f ( x , y ) → A ( ( x , y ) → ( x 0 , y 0 ) ) \lim_{(x,y) \rightarrow (x_0,y_0)} f(x,y) = A或f(x,y) \rightarrow A((x,y) \rightarrow (x_0,y_0)) (x,y)(x0,y0)limf(x,y)=Af(x,y)A((x,y)(x0,y0))

连续

如果
lim ⁡ x → x 0    y → y 0 f ( x , y ) = f ( x 0 , y 0 ) \lim_{x \rightarrow x_0 \ \ y \rightarrow y_0} f(x,y) = f(x_0,y_0) xx0  yy0limf(x,y)=f(x0,y0)
则称 f ( x , y ) f(x,y) f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处连续

偏导数

设函数 z = f ( x , y ) 在点 ( x 0 , y 0 ) z = f(x,y)在点(x_0,y_0) z=f(x,y)在点(x0,y0)的某领域内有定义。若极限
lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x \lim_{\Delta x \rightarrow 0}\frac{f(x_0+\Delta x,y_0) - f(x_0,y_0)}{\Delta x} Δx0limΔxf(x0+Δx,y0)f(x0,y0)
存在,则称此极限为函数 z = f ( x , y ) 在点 ( x 0 , y 0 ) z = f(x,y)在点(x_0,y_0) z=f(x,y)在点(x0,y0)处对x的偏导数,记作
∂ z ∂ x ∣ x = x 0 , y = y 0 , ∂ f ∂ x ∣ x = x 0 , y = y 0 , z x ′ ∣ x = x 0 , y = y 0 , f x ′ ( x 0 , y 0 ) \frac{\partial z}{\partial x}\mid_{x =x_0,y = y_0} , \frac{\partial f}{\partial x}\mid_{x =x_0,y = y_0} , z^\prime_x\mid_{x =x_0,y = y_0} , f^\prime_x(x_0,y_0) xzx=x0,y=y0,xfx=x0,y=y0,zxx=x0,y=y0,fx(x0,y0)
于是
f x ′ ( x 0 , y 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x = lim ⁡ x → x 0 f ( x , y 0 ) − f ( x 0 , y 0 ) x − x 0 f^\prime_x(x_0,y_0) = \lim_{\Delta x \rightarrow 0}\frac{f(x_0+\Delta x,y_0) - f(x_0,y_0)}{\Delta x} = \lim_{x \rightarrow x_0}\frac{f(x,y_0) - f(x_0,y_0)}{x - x_0} fx(x0,y0)=Δx0limΔxf(x0+Δx,y0)f(x0,y0)=xx0limxx0f(x,y0)f(x0,y0)

f y ′ ( x 0 , y 0 ) = lim ⁡ Δ y → 0 f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) Δ y = lim ⁡ y → y 0 f ( x 0 , y ) − f ( x 0 , y 0 ) y − y 0 f^\prime_y(x_0,y_0) = \lim_{\Delta y \rightarrow 0}\frac{f(x_0,y_0+\Delta y) - f(x_0,y_0)}{\Delta y} = \lim_{y \rightarrow y_0}\frac{f(x_0,y) - f(x_0,y_0)}{y - y_0} fy(x0,y0)=Δy0limΔyf(x0,y0+Δy)f(x0,y0)=yy0limyy0f(x0,y)f(x0,y0)

如果函数 z = f ( x , y ) z = f(x,y) z=f(x,y)在区域D内的偏导数 f x ′ ( x , y ) , f y ′ ( x , y ) f^\prime_x(x,y),f^\prime_y(x,y) fx(x,y),fy(x,y)仍具有偏导数,则它们的偏导数称为函数 z = f ( x , y ) z = f(x,y) z=f(x,y)二阶偏导数,按照对变量求导次序的不同,有如下四个二阶偏导数
∂ x ( ∂ z x ) = ∂ 2 z ∂ x 2 = f x x " ( x , y ) , ∂ y ( ∂ z x ) = ∂ 2 z ∂ x ∂ y = f x y " ( x , y ) \frac{\partial}{x}(\frac{\partial z}{x}) = \frac{\partial^2 z}{\partial x^2} = f^"_{xx}(x,y),\frac{\partial}{y}(\frac{\partial z}{x}) = \frac{\partial^2 z}{\partial x\partial y} = f^"_{xy}(x,y) x(xz)=x22z=fxx"(x,y),y(xz)=xy2z=fxy"(x,y)

∂ y ( ∂ z y ) = ∂ 2 y ∂ y 2 = f y y " ( x , y ) , ∂ x ( ∂ z y ) = ∂ 2 z ∂ y ∂ x = f y x " ( x , y ) \frac{\partial}{y}(\frac{\partial z}{y}) = \frac{\partial^2 y}{\partial y^2} = f^"_{yy}(x,y),\frac{\partial}{x}(\frac{\partial z}{y}) = \frac{\partial^2 z}{\partial y\partial x} = f^"_{yx}(x,y) y(yz)=y22y=fyy"(x,y),x(yz)=yx2z=fyx"(x,y)

其中 f x y " ( x , y ) , f y x " ( x , y ) f^"_{xy}(x,y),f^"_{yx}(x,y) fxy"(x,y)fyx"(x,y)称为混合偏导数

同样可得三阶、四阶以及n阶偏导数,二阶及二阶以上的偏导数统称为高阶偏导数

可微

如果函数 z = f ( x , y ) z = f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)全增量 Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) \Delta z = f(x+\Delta x , y + \Delta y) - f(x,y) Δz=f(x+Δx,y+Δy)f(x,y)

可表示为
Δ z = A Δ x + B Δ y + o ( ρ ) ( ρ → 0 ) \Delta z = A\Delta x+B\Delta y+o(\rho)(\rho \rightarrow 0) Δz=AΔx+BΔy+o(ρ)(ρ0)
其中 ρ = ( Δ x ) 2 + Δ y ) 2 \rho = \sqrt{(\Delta x)^2 + \Delta y)^2} ρ=(Δx)2+Δy)2 ,A,B不依赖于 Δ x , Δ y \Delta x , \Delta y Δx,Δy而仅与x,y有关

则称函数 z = f ( x , y ) z = f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)可微,而称 A Δ x + B Δ y A\Delta x+B\Delta y AΔx+BΔy为函数 z = f ( x , y ) z = f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)全微分,记作 d z dz dz,即
d z = A Δ x + B Δ y dz = A\Delta x+B\Delta y dz=AΔx+BΔy
判断函数 z = f ( x , y ) z = f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)是否可微,步骤如下:

  1. 写出全增量 Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) \Delta z = f(x+\Delta x , y + \Delta y) - f(x,y) Δz=f(x+Δx,y+Δy)f(x,y)
  2. 写出线性增量 A Δ x + B Δ y A\Delta x+B\Delta y AΔx+BΔy,其中 A = f x ′ ( x 0 , y 0 ) , B = f y ′ ( x 0 , y 0 ) A = f^\prime_x(x_0,y_0),B = f^\prime_y(x_0,y_0) A=fx(x0,y0),B=fy(x0,y0)
  3. 作极限如下,若该极限等于0,则 z = f ( x , y ) z = f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)可微,否则就不可微

lim ⁡ Δ x → 0 , Δ y → 0 Δ z − ( A Δ x + B Δ y ) ( Δ x ) 2 + Δ y ) 2 \lim_{\Delta x \rightarrow 0,\Delta y \rightarrow 0} \frac{\Delta z - (A\Delta x+B\Delta y)}{\sqrt{(\Delta x)^2 + \Delta y)^2}} Δx0,Δy0lim(Δx)2+Δy)2 Δz(AΔx+BΔy)

偏导数的连续性

对于函数 z = f ( x , y ) z = f(x,y) z=f(x,y),讨论其在某特殊点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)(比如二元分段函数的分段点)处偏导数是否连续,步骤为

  1. 用定义法求 f x ′ ( x 0 , y 0 ) , f y ′ ( x 0 , y 0 ) f^\prime_x(x_0,y_0),f^\prime_y(x_0,y_0) fx(x0,y0),fy(x0,y0)
  2. 用公式法求 f x ′ ( x , y ) , f y ′ ( x , y ) f^\prime_x(x,y),f^\prime_y(x,y) fx(x,y),fy(x,y)
  3. 计算 lim ⁡ x → x 0 , y → y 0 f x ′ ( x , y ) , lim ⁡ x → x 0 , y → y 0 f y ′ ( x , y ) \lim_{x \rightarrow x_0,y \rightarrow y_0}f^\prime_x(x,y),\lim_{x \rightarrow x_0,y \rightarrow y_0}f^\prime_y(x,y) limxx0,yy0fx(x,y),limxx0,yy0fy(x,y)

lim ⁡ x → x 0 , y → y 0 f x ′ ( x , y ) = f x ′ ( x 0 , y 0 ) , lim ⁡ x → x 0 , y → y 0 f y ′ ( x , y ) = f y ′ ( x 0 , y 0 ) \lim_{x \rightarrow x_0,y \rightarrow y_0}f^\prime_x(x,y) = f^\prime_x(x_0,y_0),\lim_{x \rightarrow x_0,y \rightarrow y_0}f^\prime_y(x,y)=f^\prime_y(x_0,y_0) limxx0,yy0fx(x,y)=fx(x0,y0),limxx0,yy0fy(x,y)=fy(x0,y0)是否成立,则 z = f ( x , y ) z = f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处的偏导数是连续的

链式求导法则

复合函数的中间变量均为一元函数的情形:

z = f ( u , v ) , u = α ( x ) , v = β ( x ) z = f(u,v),u = \alpha (x),v = \beta(x) z=f(u,v),u=α(x),v=β(x),则 z = f [ α ( x ) , β ( x ) ] z = f[\alpha(x),\beta(x)] z=f[α(x),β(x)],且
d z d x = ∂ z ∂ u ⋅ d u d x + ∂ z ∂ v ⋅ d v d x \frac{dz}{dx} = \frac{\partial z}{\partial u} \cdot \frac{d u}{d x} + \frac{\partial z}{\partial v} \cdot \frac{d v}{d x} dxdz=uzdxdu+vzdxdv
复合函数的中间变量均为多元函数的情形:

z = f ( u , v ) , u = α ( x , y ) , v = β ( x , y ) z = f(u,v),u = \alpha (x,y),v = \beta(x,y) z=f(u,v),u=α(x,y),v=β(x,y),则 z = f [ α ( x , y ) , β ( x , y ) ] z = f[\alpha(x,y),\beta(x,y)] z=f[α(x,y),β(x,y)],且
∂ z ∂ x = ∂ z ∂ u ⋅ ∂ u ∂ x + ∂ z ∂ v ⋅ ∂ v ∂ x \frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} xz=uzxu+vzxv

∂ z ∂ y = ∂ z ∂ u ⋅ ∂ u ∂ y + ∂ z ∂ v ⋅ ∂ v ∂ y \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y} yz=uzyu+vzyv

复合函数的中间变量既有一元函数,又有多元函数的情形:

z = f ( u , v ) , u = α ( x , y ) , v = β ( y ) z = f(u,v),u = \alpha (x,y),v = \beta(y) z=f(u,v),u=α(x,y),v=β(y),则 z = f [ α ( x , y ) , β ( y ) ] z = f[\alpha(x,y),\beta(y)] z=f[α(x,y),β(y)],且
∂ z ∂ x = ∂ z ∂ u ⋅ ∂ u ∂ x \frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} xz=uzxu

∂ z ∂ y = ∂ z ∂ u ⋅ ∂ u ∂ y + ∂ z ∂ v ⋅ ∂ v ∂ y \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y} yz=uzyu+vzyv

隐函数存在定理(公式法)

设函数 F ( x , y , z ) F(x,y,z) F(x,y,z)在点 P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P(x0,y0,z0)的某一领域内具有连续偏导数,且 F ( x , y , z ) = 0 , F z ′ ( x 0 , y 0 , z 0 ) = 0 F(x,y,z) = 0,F_z^\prime(x_0,y_0,z_0) = 0 F(x,y,z)=0,Fz(x0,y0,z0)=0

则方程 F ( x , y , z ) = 0 F(x,y,z) = 0 F(x,y,z)=0在点 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0)的某一领域内能唯一确定一个连续且具有连续偏导数的函数 z = f ( x , y ) z = f(x,y) z=f(x,y),它满足条件 z 0 = f ( x 0 , y 0 ) z_0 = f(x_0,y_0) z0=f(x0,y0),并有
∂ z ∂ x = − F x ′ F z ′ , ∂ z ∂ y = − F y ′ F z ′ \frac{\partial z}{\partial x} = -\frac{F^\prime_x}{F^\prime_z},\frac{\partial z}{\partial y} = -\frac{F^\prime_y}{F^\prime_z} xz=FzFx,yz=FzFy

多元函数的无条件极值

二元函数取极值的必要条件(类比一元函数)

z = f ( x , y ) z = f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)一阶偏导数存在取极值,则 f x ′ ( x 0 , y 0 ) = 0 , f y ′ ( x 0 , y 0 ) = 0 f_x^\prime(x_0,y_0) = 0,f_y^\prime(x_0,y_0) = 0 fx(x0,y0)=0,fy(x0,y0)=0

二元函数取极值的充分条件

f x x " ( x 0 , y 0 ) = A , f x y " ( x 0 , y 0 ) = B , f y y " ( x 0 , y 0 ) = C f_{xx}^"(x_0,y_0) = A,f_{xy}^"(x_0,y_0) = B,f_{yy}^"(x_0,y_0) = C fxx"(x0,y0)=Afxy"(x0,y0)=Bfyy"(x0,y0)=C

Δ = A C − B 2 \Delta = AC - B^2 Δ=ACB2,若 Δ > 0 \Delta > 0 Δ>0取极值(A<0取极大值,A>0取极小值)

Δ > 0 \Delta > 0 Δ>0不取极值, Δ = 0 \Delta = 0 Δ=0方法失效

条件极值与拉格朗日乘数法

求目标函数 u = f ( x , y , z ) u = f(x,y,z) u=f(x,y,z)在条件 α ( x , y , z ) = 0 , β ( x , y , z ) = 0 \alpha(x,y,z) = 0,\beta(x,y,z) = 0 α(x,y,z)=0,β(x,y,z)=0下的最值,则

  1. 构造辅助函数 F ( x , y , z , λ , μ ) = f ( x , y , z ) + λ α ( x , y , z ) + μ β ( x , y , z ) F(x,y,z,\lambda,\mu) = f(x,y,z) +\lambda \alpha(x,y,z) +\mu \beta(x,y,z) F(x,y,z,λ,μ)=f(x,y,z)+λα(x,y,z)+μβ(x,y,z)

{ F x ′ = f x ′ + λ α x ′ + μ α y ′ = 0 F y ′ = f y ′ + λ α y ′ + μ α y ′ = 0 F z ′ = f z ′ + λ α z ′ + μ α z ′ = 0 F λ ′ = α ( x , y , z ) = 0 F μ ′ = β ( x , y , z ) = 0 \begin{cases} F_x^\prime = f_x^\prime + \lambda \alpha^\prime_x +\mu \alpha_y^\prime = 0 \\ F_y^\prime = f_y^\prime + \lambda \alpha^\prime_y +\mu \alpha_y^\prime = 0 \\ F_z^\prime = f_z^\prime + \lambda \alpha^\prime_z +\mu \alpha_z^\prime = 0 \\ F_{\lambda}^\prime = \alpha(x,y,z) = 0 \\ F_{\mu}^\prime = \beta(x,y,z) = 0 \\ \end{cases} Fx=fx+λαx+μαy=0Fy=fy+λαy+μαy=0Fz=fz+λαz+μαz=0Fλ=α(x,y,z)=0Fμ=β(x,y,z)=0

  1. 解上述方程组得备选点 P i , i = 1 , 2 , 3 , ⋯   , n P_i,i = 1,2,3,\cdots,n Pi,i=1,2,3,,n,并求 f ( P i ) f(P_i) f(Pi),取其最大值为 u m a x u_{max} umax,最小值为 u m i n u_{min} umin
  2. 根据实际问题,必存在最值,所得即为所求

二重积分

章节概括

  • 概念、性质与对称性
    • 几何背景
    • 性质
    • 对称性
      • 普通对称性
      • 轮换对称性
  • 计算
    • 直角坐标系
    • 极坐标系
    • 极坐标系与直角坐标系选择的一般原则
    • 极直互化
    • 积分次序
    • 用二重积分处理一元积分的问题

几何背景

曲顶柱体的体积

性质

求区域面积

∬ D 1 ⋅ d σ = ∬ D d σ = A ( A 表示区域 D 的面积 ) \iint_D 1 \cdot d\sigma = \iint_D d\sigma = A(A表示区域D的面积) D1dσ=Ddσ=A(A表示区域D的面积)

可积函数必有界

当f(x,y)在有界闭区域D上可积时,f(x,y)在D上必有界
∬ D [ f ( x , y ) ± g ( x , y ) ] d σ = ∬ D f ( x , y ) d σ ± ∬ D g ( x , y ) d σ \iint_D [f(x,y) \pm g(x,y)]d\sigma = \iint_D f(x,y)d\sigma \pm \iint_D g(x,y)d\sigma D[f(x,y)±g(x,y)]dσ=Df(x,y)dσ±Dg(x,y)dσ

积分的线性性质

∬ D k f ( x , y ) d σ = k ∬ D f ( x , y ) d σ \iint_D kf(x,y)d\sigma = k\iint_D f(x,y)d\sigma Dkf(x,y)dσ=kDf(x,y)dσ

积分的可加性

f ( x , y ) f(x,y) f(x,y)在有界闭区域D上可积,且 D 1 ∪ D 2 = D , D 1 ∩ D 2 = ⊘ D_1 \cup D_2 = D,D_1 \cap D_2 = \oslash D1D2=DD1D2=,则
∬ D 1 + D 2 [ f ( x , y ) ± g ( x , y ) ] d σ = ∬ D 1 f ( x , y ) d σ ± ∬ D 2 g ( x , y ) d σ \iint_{D_1+D_2} [f(x,y) \pm g(x,y)]d\sigma = \iint_{D_1} f(x,y)d\sigma \pm \iint_{D_2} g(x,y)d\sigma D1+D2[f(x,y)±g(x,y)]dσ=D1f(x,y)dσ±D2g(x,y)dσ

积分的保号性

f ( x , y ) , g ( x , y ) f(x,y),g(x,y) f(x,y),g(x,y)在有界闭区域D上可积时,若在D上
f ( x , y ) ≤ g ( x , y ) f(x,y) \le g(x,y) f(x,y)g(x,y)
则有
∬ D f ( x , y ) d σ ≤ ∬ D g ( x , y ) d σ \iint_D f(x,y)d\sigma \le \iint_D g(x,y)d\sigma Df(x,y)dσDg(x,y)dσ
特殊的,有
∣ ∬ D f ( x , y ) d σ ∣ ≤ ∬ D ∣ f ( x , y ) ∣ d σ |\iint_D f(x,y)d\sigma | \le \iint_D |f(x,y)| d\sigma Df(x,y)dσDf(x,y)dσ

估值定理

设M,m分别是 f ( x , y ) f(x,y) f(x,y)在有界闭区域D上的最大值和最小值,A为D的面积,则有
m A ≤ ∬ D f ( x , y ) d σ ≤ M A mA \le \iint_D f(x,y) d\sigma \le MA mADf(x,y)dσMA

中值定理

设函数 f ( x , y ) f(x,y) f(x,y)在有界闭区域D上连续,A为D的面积,则在D上至少存在一点 ( ξ , η ) (\xi,\eta) (ξ,η),使得
∬ D f ( x , y ) d σ = f ( ξ , η ) A \iint_D f(x,y) d\sigma = f(\xi,\eta)A Df(x,y)dσ=f(ξ,η)A

普通对称性

∬ D f ( x , y ) d x d y = { 2 ∬ D 1 f ( x , y ) d x d y , f ( x , y ) = f ( − x , y ) 0 − f ( x , y ) = f ( − x , y ) \iint_D f(x,y) dxdy = \begin{cases} 2\iint_{D_{1}} f(x,y) dxdy, & f(x,y) = f(-x,y) \\ 0 & -f(x,y) = f(-x,y) \end{cases} Df(x,y)dxdy={2D1f(x,y)dxdy,0f(x,y)=f(x,y)f(x,y)=f(x,y)

轮换对称性

若把x与y对调,区域D不变(或区域D关于 y = x y = x y=x对称),则
∬ D f ( x , y ) d σ = ∬ D f ( y , x ) d σ \iint_D f(x,y) d\sigma = \iint_D f(y,x) d\sigma Df(x,y)dσ=Df(y,x)dσ

直角坐标系下的计算法

X型区域, φ 1 ( x ) ≤ y ≤ φ 2 ( x ) , a ≤ x ≤ b \varphi_1(x) \le y \le \varphi_2(x) , a \le x \le b φ1(x)yφ2(x),axb

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-cMaFmcm2-1682481364236)(…/…/image/image-20220525110814843.png)]
∬ D f ( x , y ) d σ = ∫ a b d x ∫ φ 1 ( x ) φ 2 ( x ) f ( x , y ) d y \iint_D f(x,y) d\sigma = \int_a^b dx \int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y)dy Df(x,y)dσ=abdxφ1(x)φ2(x)f(x,y)dy
Y型区域, φ 1 ( y ) ≤ x ≤ φ 2 ( y ) , c ≤ y ≤ d \varphi_1(y) \le x \le \varphi_2(y) , c \le y \le d φ1(y)xφ2(y),cyd

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-PCa4pgTi-1682481364238)(…/…/image/image-20220525110851769.png)]
∬ D f ( x , y ) d σ = ∫ c d d y ∫ φ 1 ( y ) φ 2 ( y ) f ( x , y ) d x \iint_D f(x,y) d\sigma = \int_c^d dy \int_{\varphi_1(y)}^{\varphi_2(y)} f(x,y)dx Df(x,y)dσ=cddyφ1(y)φ2(y)f(x,y)dx
这里的下限都必须小于或等于上限

极坐标系下的计算法

极点O在区域D外部

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MHnTJHpG-1682481364238)(…/…/image/image-20220525110951461.png)]
∬ f ( x , y ) d σ = ∫ α β d θ ∫ r 1 ( θ ) r 2 ( θ ) f ( r c o s θ , r s i n θ ) r d r \iint f(x,y)d\sigma = \int_\alpha^\beta d\theta \int_{r_1(\theta)}^{r_2(\theta)} f(rcos\theta,rsin\theta)rdr f(x,y)dσ=αβdθr1(θ)r2(θ)f(rcosθ,rsinθ)rdr
极点O在区域D边界上

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nzPLs4Ch-1682481364239)(…/…/image/image-20220525111047749.png)]
∬ f ( x , y ) d σ = ∫ α β d θ ∫ 0 r ( θ ) f ( r c o s θ , r s i n θ ) r d r \iint f(x,y)d\sigma = \int_\alpha^\beta d\theta \int_{0}^{r(\theta)} f(rcos\theta,rsin\theta)rdr f(x,y)dσ=αβdθ0r(θ)f(rcosθ,rsinθ)rdr
极点O在区域D内部

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KPVYg68N-1682481364239)(…/…/image/image-20220525111110216.png)]
∬ f ( x , y ) d σ = ∫ 0 2 π d θ ∫ 0 r ( θ ) f ( r c o s θ , r s i n θ ) r d r \iint f(x,y)d\sigma = \int_0^{2\pi} d\theta \int_{0}^{r(\theta)} f(rcos\theta,rsin\theta)rdr f(x,y)dσ=02πdθ0r(θ)f(rcosθ,rsinθ)rdr

极坐标系与直角坐标系的一般原则

  1. 看被积函数是否为 f ( x 2 + y 2 ) , f ( y x ) , f ( x y ) f(x^2+y^2),f(\frac{y}{x}),f(\frac{x}{y}) f(x2+y2),f(xy),f(yx)等形式
  2. 看积分区域是否为圆或者圆的一部分

如果两者兼是,那么优先选用极坐标系

以上只是一般原则,为大方向,实际情况实际分析

极坐标系与直角坐标系的相互转换

令 { x = r c o s θ y = r s i n θ 或 { x − x 0 = r c o s θ y − y 0 = r s i n θ 令\begin{cases}x = rcos\theta \\y = rsin\theta \end{cases}或\begin{cases}x-x_0 = rcos\theta \\ y-y_0 = rsin\theta \end{cases} {x=rcosθy=rsinθ{xx0=rcosθyy0=rsinθ

其中 D = { ( r , θ ) ∣ α ≤ θ ≤ β , r 1 ( θ ) ≤ θ ≤ r 2 ( θ ) } 其中D = \{(r,\theta )|\alpha \le \theta \le \beta ,r_1(\theta) \le \theta \le r_2(\theta)\} 其中D={(r,θ)αθβ,r1(θ)θr2(θ)}

则 ∬ f ( x , y ) d σ = ∫ α β d θ ∫ r 1 ( θ ) r 2 ( θ ) r f ( r c o s θ , r s i n θ ) d r ( 注意后面多个 r , d x → r d r ) 则\iint f(x,y)d\sigma = \int_\alpha^\beta d\theta \int_{r_1(\theta)}^{r_2(\theta)} rf(rcos\theta,rsin\theta)dr(注意后面多个r,dx\rightarrow rdr) f(x,y)dσ=αβdθr1(θ)r2(θ)rf(rcosθ,rsinθ)dr(注意后面多个r,dxrdr)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MtxGZsYm-1682481364240)(…/…/image/极坐标变换.png)]

常微分方程

章节概括

  • 微分方程的概念(用概念做题)
    • 微分方程
    • 常微分方程
    • 微分方程的阶
    • 微分方程的解
    • 微分方程的通解
    • 初始条件与特解
  • 一阶微分方程的求解
    • 变量可分离型
    • 可化为变量可分离型
    • 一阶线性微分方程
    • 伯努利方程
  • 二阶可降阶微分方程的求解
    • y " = f ( x , y ′ ) y^" = f(x,y^\prime) y"=f(x,y)
    • y " = f ( y , y ′ ) y^" = f(y,y^\prime) y"=f(y,y)
  • 高阶线性微分方程的求解
    • 概念
    • 解的结构(以二阶为例)
    • 二阶常系数齐次线性微分方程的的通解
    • 二阶常系数非齐次线性微分方程的的特解
    • n阶常系数齐次线性微分方程的解

概念

微分方程

表示未知函数及其导数(或者微分)与自变量之间关系的方程称为微分方程

常微分方程

未知函数是一元函数微分方程称为常微分方程

如: y " ′ − y " + y = 0 y^{"\prime} - y^" + y = 0 y"′y"+y=0

微分方程的阶

方程中未知函数的最高阶导数的阶数称为微分方程的阶

如: y " ′ − y " + y = 0 y^{"\prime} - y^" + y = 0 y"′y"+y=0就是三阶微分方程

微分方程的通解

若微分方程的解中含有的独立常数个数等于微分方程的阶数,则该解称为微分方程的通解

初始条件与特解

确定通解中的常数条件就是初始条件,确定了通解中的常数后,解就成了特解

一阶微分方程的求解

变量可分离型

d y d x = φ 1 ( x ) φ 2 ( x ) ⇒ d y φ 2 ( x ) = φ 1 ( x ) d x ⇒ ∫ d y φ 2 ( x ) = ∫ φ 1 ( x ) d x + C ( φ 2 ( x ) ≠ 0 ) \frac{\mathrm{d} y}{\mathrm{d} x} = \varphi _1(x)\varphi _2(x) \Rightarrow \frac{\mathrm{d} y}{\varphi _2(x)} = \varphi _1(x)dx \Rightarrow \int\frac{\mathrm{d} y}{\varphi _2(x)} = \int\varphi _1(x)dx + C (\varphi _2(x) \neq 0) dxdy=φ1(x)φ2(x)φ2(x)dy=φ1(x)dxφ2(x)dy=φ1(x)dx+C(φ2(x)=0)

可化为变量可分离型

d y d x = f ( a x + b y + c ) 令 u = a x + b y + c ⇒ d u d x = a + b d y d x ⇒ d u d x = a + b f ( u ) \frac{\mathrm{d} y}{\mathrm{d} x} = f(ax+by+c)令u = ax+by+c \Rightarrow \frac{\mathrm{d} u}{\mathrm{d} x} = a+b\frac{\mathrm{d} y}{\mathrm{d} x} \Rightarrow \frac{\mathrm{d} u}{\mathrm{d} x} = a+bf(u) dxdy=f(ax+by+c)u=ax+by+cdxdu=a+bdxdydxdu=a+bf(u)

变量替换法

d y d x = φ ( y x ) ( 令 y x = u ) ⇒ u + x d u d x = φ ( u ) ⇒ ∫ d y φ ( u ) − u = ∫ d x x + C ( φ ( u ) − u ≠ 0 ) \frac{\mathrm{d} y}{\mathrm{d} x} = \varphi _(\frac{y}{x})(令\frac{y}{x}=u) \Rightarrow u+x\frac{du}{dx} = \varphi (u) \Rightarrow \int\frac{\mathrm{d} y}{\varphi (u)-u} = \int \frac{dx}{x} + C (\varphi (u)-u \neq 0) dxdy=φ(xy)(xy=u)u+xdxdu=φ(u)φ(u)udy=xdx+C(φ(u)u=0)

一阶齐次线性微分方程

d y d x + P ( x ) y = 0 ,通解公式为: y = C e − ∫ P ( x ) d x ( C 为任意常数 ) \frac{dy}{dx} + P(x)y = 0,通解公式为:y= Ce^{-\int P(x)dx} (C为任意常数) dxdy+P(x)y=0,通解公式为:y=CeP(x)dx(C为任意常数)

一阶非齐次线性微分方程

d y d x + P ( x ) y = Q ( x ) ,通解公式为: y = [ ∫ Q ( x ) e ∫ P ( x ) d x d x + C ] e − ∫ P ( x ) d x ( C 为任意常数 ) \frac{dy}{dx} + P(x)y = Q(x),通解公式为:y= [\int Q(x)e^{\int P(x)dx}dx+C]e^{-\int P(x)dx} (C为任意常数) dxdy+P(x)y=Q(x),通解公式为:y=[Q(x)eP(x)dxdx+C]eP(x)dx(C为任意常数)

伯努利方程

形如 y ′ + p ( x ) y = q ( x ) y n ( n ≠ 0 , 1 ) y^\prime + p(x)y = q(x)y^n(n\neq 0,1) y+p(x)y=q(x)yn(n=0,1)的方程,其中 p ( x ) , q ( x ) p(x),q(x) p(x),q(x)为已知的连续函数,其解法具体步骤为

  1. 先变形为 y − n ⋅ y ′ + p ( x ) y 1 − n = q ( x ) y^{-n} \cdot y^\prime + p(x)y^{1-n} = q(x) yny+p(x)y1n=q(x)
  2. z = y 1 − n z=y^{1-n} z=y1n,得 d z d x = ( 1 − n ) y − n d y d x \frac{dz}{dx} = (1-n)y^{-n}\frac{dy}{dx} dxdz=(1n)yndxdy,则 1 1 − n ⋅ d z d x + p ( x ) z = q ( x ) \frac{1}{1-n} \cdot \frac{dz}{dx} + p(x)z = q(x) 1n1dxdz+p(x)z=q(x)
  3. 解此一阶线性微分方程即可

高阶微分方程

概念

  1. 方程 y " + p ( x ) y ′ + q ( x ) y = f ( x ) y^" + p(x)y^\prime + q(x)y = f(x) y"+p(x)y+q(x)y=f(x)称为二阶变系数线性微分方程,其中 p ( x ) , q ( x ) p(x),q(x) p(x),q(x)叫系数函数,f(x)叫自由项,均为已知的连续函数
    1. f ( x ) = 0 f(x) = 0 f(x)=0时, y " + p ( x ) y ′ + q ( x ) y = 0 y^" + p(x)y^\prime + q(x)y = 0 y"+p(x)y+q(x)y=0齐次方程
    2. 当f(x)不恒等于0时, y " + p ( x ) y ′ + q ( x ) y = f ( x ) y^" + p(x)y^\prime + q(x)y = f(x) y"+p(x)y+q(x)y=f(x)非齐次方程
  2. 方程 y " + p y ′ + q y = f ( x ) y^" + py^\prime + qy = f(x) y"+py+qy=f(x)称为二阶常系数线性微分方程,其中 p , q p,q p,q为常数, f ( x ) f(x) f(x)叫自由项,为连续函数
    1. f ( x ) = 0 f(x) = 0 f(x)=0时, y " + p y ′ + q y = 0 y^" + py^\prime + qy = 0 y"+py+qy=0齐次方程
    2. 当f(x)不恒等于0时, y " + p y ′ + q y = f ( x ) y^" + py^\prime + qy = f(x) y"+py+qy=f(x)非齐次方程

二阶可降阶微分方程的求解

#### y ′ ′ = f ( x , y ′ ) y^{\prime\prime} = f(x,y^{\prime}) y′′=f(x,y)的方程

方程中不显含未知函数y

  1. y ′ = p ( x ) , y " = p ′ y^\prime = p(x),y^" = p^\prime y=p(x)y"=p,则原方程变为一阶方程 d p d x = f ( x , p ) \frac{dp}{dx} = f(x,p) dxdp=f(x,p)
  2. 若求得通解为 p = φ ( x , C 1 ) p = \varphi(x,C_1) p=φ(x,C1) y ′ = φ ( x , C 1 ) y^\prime = \varphi(x,C_1) y=φ(x,C1),则原方程的通解为 y = ∫ φ ( x , C 1 ) d x + C 2 y = \int \varphi(x,C_1)dx + C_2 y=φ(x,C1)dx+C2

#### y ′ ′ = f ( y , y ′ ) y^{\prime\prime} = f(y,y^{\prime}) y′′=f(y,y)的方程

方程中不显含未知函数x

  1. y ′ = p , y " = d p d x ⋅ p y^\prime = p,y^" = \frac{dp}{dx} \cdot p y=py"=dxdpp,则原方程变为一阶方程 p d p d x = f ( x , p ) p\frac{dp}{dx} = f(x,p) pdxdp=f(x,p)
  2. 若求得通解为 p = φ ( x , C 1 ) p = \varphi(x,C_1) p=φ(x,C1),则由 p = d y d x p = \frac{dy}{dx} p=dxdy可得 d y d x = φ ( y , C 1 ) \frac{dy}{dx} = \varphi(y,C_1) dxdy=φ(y,C1),分离变量得 1 φ ( y , C 1 ) d y = d x \frac{1}{\varphi(y,C_1)}dy = dx φ(y,C1)1dy=dx
  3. 两边积分得 ∫ 1 φ ( y , C 1 ) d y = x + C 2 \int \frac{1}{\varphi(y,C_1)}dy = x+C_2 φ(y,C1)1dy=x+C2,即可求得原方程的通解

微分算子法

目的为算非齐次微分方程的特解

原视频:超全类型微分算子法合辑,手把手教你考场实战!_哔哩哔哩_bilibili

y ′ ′ + p y ′ + q y = f ( x ) ,设特解为 y ∗ y'' + py' + qy = f(x),设特解为y^* y′′+py+qy=f(x),设特解为y

y ∗ = 1 F ( D ) f ( x ) = 1 D 2 + p D + q f ( x ) ( F ( D ) = 0 时求导 F ′ ( D ) 后乘以 x ) , f ( x ) 分以下情况 y^* = \frac{1}{F(D)}f(x) = \frac{1}{D^2+pD+q}f(x)(F(D) = 0 时求导F'(D)后乘以x),f(x)分以下情况 y=F(D)1f(x)=D2+pD+q1f(x)(F(D)=0时求导F(D)后乘以x)f(x)分以下情况

f ( x ) = e k x → 将所有的 D 换成 k f(x) = e^{kx} \rightarrow 将所有的D换成k f(x)=ekx将所有的D换成k

f ( x ) = s i n a x / c o s a x → 将 D 2 换成 − a 2 f(x) = sinax / cosax \rightarrow 将D^2换成 -a^2 f(x)=sinax/cosaxD2换成a2

解的结构(以二阶为例)

y 1 ( x ) y_1(x) y1(x) y 2 ( x ) y_2(x) y2(x) y " + p ( x ) y ′ + q ( x ) y = 0 y^" + p(x)y' + q(x)y = 0 y"+p(x)y+q(x)y=0的两个解,且 y 1 ( x ) y 2 ( x ) ≠ C \frac{y_1(x)}{y_2(x)}\neq C y2(x)y1(x)=C(常数),则称 y 1 ( x ) , y 2 ( x ) y_1(x),y_2(x) y1(x),y2(x)也是该方程的两个线性无关的解,且
y ( x ) = C 1 y 1 ( x ) + C 2 y 2 ( x ) y(x) = C_1y_1(x) + C_2y_2(x) y(x)=C1y1(x)+C2y2(x)

是方程 y " + p ( x ) y ′ + q ( x ) y = 0 y^" + p(x)y' + q(x)y = 0 y"+p(x)y+q(x)y=0的通解

y ( x ) = C 1 y 1 ( x ) + C 2 y 2 ( x ) y(x) = C_1y_1(x) + C_2y_2(x) y(x)=C1y1(x)+C2y2(x) y " + p ( x ) y ′ + q ( x ) y = 0 y^" + p(x)y' + q(x)y = 0 y"+p(x)y+q(x)y=0的通解, y ∗ ( x ) y^*(x) y(x) y " + p ( x ) y ′ + q ( x ) y = f ( x ) y^" + p(x)y' + q(x)y = f(x) y"+p(x)y+q(x)y=f(x)的一个特解,则
y ∗ ( x ) + y y^*(x) + y y(x)+y
y " + p ( x ) y ′ + q ( x ) y = f ( x ) y^" + p(x)y' + q(x)y = f(x) y"+p(x)y+q(x)y=f(x)的通解

y 1 ∗ ( x ) y_1^{*}(x) y1(x) y " + p ( x ) y ′ + q ( x ) y = f 1 ( x ) y^" + p(x)y' + q(x)y = f_1(x) y"+p(x)y+q(x)y=f1(x)的解, y 2 ∗ ( x ) y_2^{*}(x) y2(x) y " + p ( x ) y ′ + q ( x ) y = f 2 ( x ) y^" + p(x)y' + q(x)y = f_2(x) y"+p(x)y+q(x)y=f2(x)的解,则
y 1 ∗ ( x ) + y 2 ∗ ( x ) y_1^*(x)+y_2^*(x) y1(x)+y2(x)
y " + p ( x ) y ′ + q ( x ) y = f 1 ( x ) + f 2 ( x ) y^" + p(x)y' + q(x)y = f_1(x)+f_2(x) y"+p(x)y+q(x)y=f1(x)+f2(x)的通解

二阶常系数齐次线性微分方程的通解

对于 y " + p y ′ + q y = 0 y^" + py^\prime + qy = 0 y"+py+qy=0,其对应的特征方程为 r 2 + p r + q = 0 r^2 + pr + q = 0 r2+pr+q=0,求其特征根,有以下三种情况(其中 C 1 , C 2 C_1,C_2 C1,C2为任意常数):

  1. p 2 − 4 q > 0 p^2 - 4q > 0 p24q>0,设 r 1 , r 2 r_1,r_2 r1,r2是特征方程的两个不等实根,即 r 1 ≠ r 2 r_1 \neq r_2 r1=r2,可得其通解为

y = C 1 e r 1 x + C 2 e r 2 x y = C_1e^{r_1x} + C_2e^{r_2x} y=C1er1x+C2er2x

  1. p 2 − 4 q = 0 p^2 - 4q = 0 p24q=0,设 r 1 , r 2 r_1,r_2 r1,r2是特征方程的两个相等的实根,即二重根,令 r 1 = r 2 = r r_1 = r_2 = r r1=r2=r,可得其通解为

y = ( C 1 + C 2 x ) e r x y = (C_1 + C_2x)e^{rx} y=(C1+C2x)erx

  1. p 2 − 4 q < 0 p^2 - 4q < 0 p24q<0,设 α ± β i \alpha \pm \beta i α±βi是特征方程的一对共轭复根,可得其通解为

y = e a x ( C 1 c o s β x + C 2 s i n β x ) y = e^{ax}(C_1 cos\beta x + C_2 sin\beta x) y=eax(C1cosβx+C2sinβx)

二阶常系数非齐次线性微分方程的特解

对于 y " + p y ′ + q y = f ( x ) y^" + py^\prime + qy = f(x) y"+py+qy=f(x)

P n ( x ) , P m ( x ) P_n(x),P_m(x) Pn(x),Pm(x)分别为x的n次、m次多项式

  1. 当自由项 f ( x ) = P n ( x ) e a x f(x) = P_n(x)e^{ax} f(x)=Pn(x)eax时,特解要设为 y ∗ = e a x Q n ( x ) x k y^* = e^{ax}Q_n(x)x^k y=eaxQn(x)xk,其中
    1. e a x e^{ax} eax照抄
    2. Q n ( x ) Q_n(x) Qn(x)为x的n次多项式
    3. k = 0时,a不是特征根;k = 1时,a是单特征根;k = 2时,a是二重特征根
  2. 当自由项 f ( x ) = e a x [ P m ( x ) c o s β x + P n ( x ) s i n β x ] f(x) = e^{ax}[P_m(x)cos\beta x + P_n(x)sin\beta x] f(x)=eax[Pm(x)cosβx+Pn(x)sinβx]时,特解要设为 y ∗ = e a x [ Q l ( 1 ) ( x ) c o s β x + Q l ( 2 ) ( x ) s i n β x ] x k y^* = e^{ax}[Q_l^{(1)}(x)cos\beta x + Q_l^{(2)}(x)sin\beta x]x^k y=eax[Ql(1)(x)cosβx+Ql(2)(x)sinβx]xk,其中
    1. e a x e^{ax} eax照抄
    2. l = m a x { m , n } , Q l ( 1 ) , Q l ( 2 ) ( x ) l = max\{m,n\},Q_l^{(1)},Q_l^{(2)}(x) l=max{m,n},Ql(1),Ql(2)(x)分别为x的两个不同的 l l l次多项式
    3. k = 0时, a ± β i a \pm \beta i a±βi不是特征根;k = 1时, a ± β i a \pm \beta i a±βi是单特征根

n阶常系数齐次线性微分方程的解

方程 y ( n ) + p 1 y ( n − 1 ) + ⋯ + p ( n − 1 ) y ′ + p n y = 0 y^{(n)} + p_1y^{(n-1)} + \cdots + p_{(n-1)}y^\prime + p_n y= 0 y(n)+p1y(n1)++p(n1)y+pny=0称为n阶常系数齐次线性微分方程

其中 p 1 , p 2 , ⋯   , p n p_1,p_2,\cdots,p_n p1,p2,,pn为常数,其对应的特征方程为 r n + p 1 r ( n − 1 ) + ⋯ + p ( n − 1 ) r + p n = 0 r^{n} + p_1r^{(n-1)} + \cdots + p_{(n-1)}r + p_n = 0 rn+p1r(n1)++p(n1)r+pn=0,求特征根

  1. 特征根为单实根r时,微分方程通解中对应一项 C e r x Ce^{rx} Cerx
  2. 特征根为k重实根r时,微分方程通解中对应k项 ( C 1 + C 2 x + ⋯ + C k x k − 1 ) e r x (C_1 + C_2x +\cdots + C_kx^{k-1})e^{rx} (C1+C2x++Ckxk1)erx
  3. 特征根为单复根 a ± β i ( β > 0 ) a \pm \beta i(\beta > 0) a±βi(β>0)时,微分方程通解中对应两项 e a x ( C 1 c o s β x + C 2 s i n β x ) e^{ax}(C_1cos\beta x + C_2sin\beta x) eax(C1cosβx+C2sinβx)
  4. 特征根为k重复根 a ± β i ( β > 0 ) a \pm \beta i(\beta > 0) a±βi(β>0)时,微分方程通解中对应 2 k 2k 2k e a x [ ( C 1 + C 2 x + ⋯ + C k x k − 1 ) c o s β x + ( D 1 + D 2 x + ⋯ + D k x k − 1 ) s i n β x ) ] e^{ax}[(C_1 + C_2x + \cdots + C_kx^{k-1})cos\beta x + (D_1 + D_2x + \cdots + D_kx^{k-1})sin\beta x)] eax[(C1+C2x++Ckxk1)cosβx+(D1+D2x++Dkxk1)sinβx)]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值