不定积分常用公式

文章列举了基础的微积分公式,包括对x的积分、1/x的积分、1/x^2的积分、1/sqrt(x)的积分以及a^x的积分等。同时,详细介绍了正弦、余弦函数的积分,以及它们的反函数的积分。还涉及到了根号下的积分表达式和一些特定形式的有理函数积分的处理方法,如部分分式分解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基本

∫ x a d x = 1 1 + a x 1 + a + C ( a ≠ − 1 ) \int x^adx = \frac{1}{1+a}x^{1+a}+C(a\neq-1) xadx=1+a1x1+a+C(a=1)

∫ 1 x d x = I n ∣ x ∣ + C \int\frac{1}{x}dx = In|x|+C x1dx=Inx+C

∫ 1 x 2 d x = − 1 x + C \int\frac{1}{x^2}dx = - \frac{1}{x}+C x21dx=x1+C

∫ 1 x d x = 2 x + C \int \frac{1}{\sqrt{x}} dx = 2\sqrt{x} + C x 1dx=2x +C

∫ a x d x = 1 I n a a x + C \int a^x dx = \frac{1}{Ina}a^x+C axdx=Ina1ax+C

∫ e x d x = e x + C \int e^xdx = e^x+C exdx=ex+C

三角函数

正弦

∫ s i n x d x = − c o s x + C \int sinxdx = -cosx+C sinxdx=cosx+C

∫ s e c x d x = l n ∣ s e c x + t a n x ∣ + C \int secx dx = ln|secx+tanx|+C secxdx=lnsecx+tanx+C

∫ s e c 2 x d x = t a n x + C \int sec^2x dx = tanx+C sec2xdx=tanx+C

∫ t a n x d x = − l n ∣ c o s x ∣ + C \int tanx dx = -ln|cosx|+C tanxdx=lncosx+C

∫ s e c x t a n x d x = s e c x + C \int secxtanx dx = secx+C secxtanxdx=secx+C

余弦

∫ c o s x d x = s i n x + C \int cosx dx = sinx+C cosxdx=sinx+C

∫ c s c x d x = l n ∣ c s c x − c o t x ∣ + C \int cscx dx = ln|cscx-cotx|+C cscxdx=lncscxcotx+C

∫ c s c 2 x d x = − c o t x + C \int csc^2x dx = -cotx+C csc2xdx=cotx+C

∫ c o t x d x = l n ∣ s i n x ∣ + C \int cotx dx = ln|sinx|+C cotxdx=lnsinx+C

∫ c s c x c o t x d x = − c s c x + C \int cscxcotx dx = -cscx+C cscxcotxdx=cscx+C

反三角函数与分式积分

∫ 1 a 2 + x 2 d x = 1 a a r c t a n x a + C \int \frac{1}{a^2+x^2}dx = \frac{1}{a}arctan\frac{x}{a}+C a2+x21dx=a1arctanax+C

∫ 1 a 2 − x 2 d x = 1 2 a I n ∣ a + x a − x ∣ + C \int \frac{1}{a^2-x^2}dx = \frac{1}{2a}In|\frac{a+x}{a-x}|+C a2x21dx=2a1Inaxa+x+C

∫ 1 x 2 − a 2 d x = 1 2 a I n ∣ x − a x + a ∣ + C \int \frac{1}{x^2-a^2}dx = \frac{1}{2a}In|\frac{x-a}{x+a}|+C x2a21dx=2a1Inx+axa+C

∫ 1 x 2 ± a 2 d x = I n ∣ x + x 2 ± a 2 ∣ + C \int \frac{1}{\sqrt{x^2 \pm a^2}}dx = In|x+\sqrt{x^2 \pm a^2}|+C x2±a2 1dx=Inx+x2±a2 +C

∫ 1 a 2 − x 2 d x = a r c s i n x a + C \int \frac{1}{\sqrt{a^2 - x^2}}dx = arcsin\frac{x}{a}+C a2x2 1dx=arcsinax+C

根号积分

∫ x 2 + a 2 d x = x 2 x 2 + a 2 + a 2 2 l n ( x + x 2 + a 2 ) + C \int \sqrt{x^2 + a^2}dx = \frac{x}{2}\sqrt{x^2 + a^2} + \frac{a^2}{2}ln(x+\sqrt{x^2 + a^2})+C x2+a2 dx=2xx2+a2 +2a2ln(x+x2+a2 )+C

∫ x 2 − a 2 d x = x 2 x 2 − a 2 − a 2 2 l n ∣ x + x 2 − a 2 ∣ + C \int \sqrt{x^2 - a^2}dx = \frac{x}{2}\sqrt{x^2 - a^2} - \frac{a^2}{2}ln|x+\sqrt{x^2 - a^2}|+C x2a2 dx=2xx2a2 2a2lnx+x2a2 +C

∫ a 2 − x 2 d x = x 2 a 2 − x 2 + a 2 2 a r c s i n x a + C \int \sqrt{a^2 - x^2}dx = \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2}arcsin\frac{x}{a}+C a2x2 dx=2xa2x2 +2a2arcsinax+C

其他扩展

消幂

类似于 ∫ x m e λ x d x \int x^m e^{\lambda x}dx xmeλxdx ∫ x m l n n x d x \int x^m ln^nxdx xmlnnxdx ∫ x m s i n a x / c o s a x d x \int x^m sinax/cosaxdx xmsinax/cosaxdx,可用表格法计算,具体为:

对角相连,正负相间,上导下积,导到0停。

三角代换

a 2 − x 2 → x = a s i n t \sqrt{a^2 - x^2} \to x=asint a2x2 x=asint a 2 + x 2 → x = a t a n t \sqrt{a^2 + x^2} \to x=atant a2+x2 x=atant x 2 − a 2 → x = a s e c t \sqrt{x^2 - a^2} \to x=asect x2a2 x=asect
s i n 2 x = 1 − c o s 2 x 2 sin^2x = \frac{1-cos2x}{2} sin2x=21cos2x

c o s 2 x = 1 + c o s 2 x 2 cos^2x = \frac{1+cos2x}{2} cos2x=21+cos2x

s i n 2 x = 2 s i n x c o s x sin2x = 2sinxcosx sin2x=2sinxcosx

c o s 2 x = c o s 2 x − s i n 2 x = 2 c o s 2 x − 1 = 1 − 2 s i n 2 x cos2x = cos^2x - sin^2x = 2cos^2x - 1 = 1 - 2sin^2x cos2x=cos2xsin2x=2cos2x1=12sin2x

万能替换公式:令 u = t a n x 2 u = tan\frac{x}{2} u=tan2x x = 2 a r c t a n u x = 2arctanu x=2arctanu d x = 2 1 + u 2 d u dx = \frac{2}{1+u^2}du dx=1+u22du
s i n x = 2 t a n x 2 1 + t a n 2 x 2 = 2 u 1 + u 2 sinx = \frac{2tan\frac{x}{2}}{1 + tan^2\frac{x}{2}} = \frac{2u}{1+u^2} sinx=1+tan22x2tan2x=1+u22u

c o s x = 1 − t a n 2 x 2 1 + t a n 2 x 2 = 1 − u 2 1 + u 2 cosx = \frac{1 - tan^2\frac{x}{2}}{1 + tan^2\frac{x}{2}} = \frac{1-u^2}{1+u^2} cosx=1+tan22x1tan22x=1+u21u2

t a n x = s i n x c o s x tanx = \frac{sinx}{cosx} tanx=cosxsinx s e c x = 1 c o s x secx = \frac{1}{cosx} secx=cosx1 c o t x = 1 t a n x cotx = \frac{1}{tanx} cotx=tanx1 c s c x = 1 s i n x cscx = \frac{1}{sinx} cscx=sinx1

特殊公式

∫ e a x s i n b x / c o s b x d x = 1 a 2 + b 2 ⋅ ∣ ( e a x ) ′ ( s i n b x ) ′ e a x s i n b x ∣ + C = 1 a 2 + b 2 ⋅ ( a e a x s i n b x − b e a x c o s b x ) + C \int e^{ax}sinbx/cosbxdx = \frac{1}{a^2+b^2} \cdot \begin{vmatrix} (e^{ax})^\prime & (sinbx)^\prime\\ e^{ax} & sinbx \end{vmatrix} + C = \frac{1}{a^2+b^2} \cdot (ae^{ax}sinbx - be^{ax}cosbx) + C eaxsinbx/cosbxdx=a2+b21 (eax)eax(sinbx)sinbx +C=a2+b21(aeaxsinbxbeaxcosbx)+C

∫ 1 a 2 s i n 2 x + b 2 c o s 2 x d x = ∫ 1 c o s 2 x ( a 2 t a n 2 x + b 2 ) d x = 1 a ∫ 1 ( a t a n x ) 2 + b 2 d a t a n x = 1 a b a r c t a n a t a n x b + C \int \frac{1}{a^2sin^2x + b^2cos^2x}dx = \int \frac{1}{cos^2x(a^2tan^2x + b^2)}dx = \frac{1}{a}\int \frac{1}{(atanx)^2 + b^2}datanx = \frac{1}{ab}arctan\frac{atanx}{b}+ C a2sin2x+b2cos2x1dx=cos2x(a2tan2x+b2)1dx=a1(atanx)2+b21datanx=ab1arctanbatanx+C

有理函数拆分

1 ( x + 1 ) ( x + 2 ) ( x + 3 ) → A ( x + 1 ) + B ( x + 2 ) + C ( x + 3 ) \frac{1}{(x + 1)(x + 2)(x + 3)} \to \frac{A}{(x + 1)} + \frac{B}{(x + 2)} + \frac{C}{(x + 3)} (x+1)(x+2)(x+3)1(x+1)A+(x+2)B+(x+3)C

1 ( x + 1 ) 2 ( x − 1 ) → A ( x + 1 ) + B ( x + 1 ) 2 + C ( x − 1 ) \frac{1}{(x + 1)^2(x - 1)} \to \frac{A}{(x + 1)} + \frac{B}{(x + 1)^2} + \frac{C}{(x - 1)} (x+1)2(x1)1(x+1)A+(x+1)2B+(x1)C

1 ( x − 1 ) ( x 2 + 1 ) → A ( x − 1 ) + B x + C ( x 2 + 1 ) \frac{1}{(x - 1)(x^2 + 1)} \to \frac{A}{(x - 1)} + \frac{Bx + C}{(x^2 + 1)} (x1)(x2+1)1(x1)A+(x2+1)Bx+C

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值