基本
∫ x a d x = 1 1 + a x 1 + a + C ( a ≠ − 1 ) \int x^adx = \frac{1}{1+a}x^{1+a}+C(a\neq-1) ∫xadx=1+a1x1+a+C(a=−1)
∫ 1 x d x = I n ∣ x ∣ + C \int\frac{1}{x}dx = In|x|+C ∫x1dx=In∣x∣+C
∫ 1 x 2 d x = − 1 x + C \int\frac{1}{x^2}dx = - \frac{1}{x}+C ∫x21dx=−x1+C
∫ 1 x d x = 2 x + C \int \frac{1}{\sqrt{x}} dx = 2\sqrt{x} + C ∫x1dx=2x+C
∫ a x d x = 1 I n a a x + C \int a^x dx = \frac{1}{Ina}a^x+C ∫axdx=Ina1ax+C
∫ e x d x = e x + C \int e^xdx = e^x+C ∫exdx=ex+C
三角函数
正弦
∫ s i n x d x = − c o s x + C \int sinxdx = -cosx+C ∫sinxdx=−cosx+C
∫ s e c x d x = l n ∣ s e c x + t a n x ∣ + C \int secx dx = ln|secx+tanx|+C ∫secxdx=ln∣secx+tanx∣+C
∫ s e c 2 x d x = t a n x + C \int sec^2x dx = tanx+C ∫sec2xdx=tanx+C
∫ t a n x d x = − l n ∣ c o s x ∣ + C \int tanx dx = -ln|cosx|+C ∫tanxdx=−ln∣cosx∣+C
∫ s e c x t a n x d x = s e c x + C \int secxtanx dx = secx+C ∫secxtanxdx=secx+C
余弦
∫ c o s x d x = s i n x + C \int cosx dx = sinx+C ∫cosxdx=sinx+C
∫ c s c x d x = l n ∣ c s c x − c o t x ∣ + C \int cscx dx = ln|cscx-cotx|+C ∫cscxdx=ln∣cscx−cotx∣+C
∫ c s c 2 x d x = − c o t x + C \int csc^2x dx = -cotx+C ∫csc2xdx=−cotx+C
∫ c o t x d x = l n ∣ s i n x ∣ + C \int cotx dx = ln|sinx|+C ∫cotxdx=ln∣sinx∣+C
∫ c s c x c o t x d x = − c s c x + C \int cscxcotx dx = -cscx+C ∫cscxcotxdx=−cscx+C
反三角函数与分式积分
∫ 1 a 2 + x 2 d x = 1 a a r c t a n x a + C \int \frac{1}{a^2+x^2}dx = \frac{1}{a}arctan\frac{x}{a}+C ∫a2+x21dx=a1arctanax+C
∫ 1 a 2 − x 2 d x = 1 2 a I n ∣ a + x a − x ∣ + C \int \frac{1}{a^2-x^2}dx = \frac{1}{2a}In|\frac{a+x}{a-x}|+C ∫a2−x21dx=2a1In∣a−xa+x∣+C
∫ 1 x 2 − a 2 d x = 1 2 a I n ∣ x − a x + a ∣ + C \int \frac{1}{x^2-a^2}dx = \frac{1}{2a}In|\frac{x-a}{x+a}|+C ∫x2−a21dx=2a1In∣x+ax−a∣+C
∫ 1 x 2 ± a 2 d x = I n ∣ x + x 2 ± a 2 ∣ + C \int \frac{1}{\sqrt{x^2 \pm a^2}}dx = In|x+\sqrt{x^2 \pm a^2}|+C ∫x2±a21dx=In∣x+x2±a2∣+C
∫ 1 a 2 − x 2 d x = a r c s i n x a + C \int \frac{1}{\sqrt{a^2 - x^2}}dx = arcsin\frac{x}{a}+C ∫a2−x21dx=arcsinax+C
根号积分
∫ x 2 + a 2 d x = x 2 x 2 + a 2 + a 2 2 l n ( x + x 2 + a 2 ) + C \int \sqrt{x^2 + a^2}dx = \frac{x}{2}\sqrt{x^2 + a^2} + \frac{a^2}{2}ln(x+\sqrt{x^2 + a^2})+C ∫x2+a2dx=2xx2+a2+2a2ln(x+x2+a2)+C
∫ x 2 − a 2 d x = x 2 x 2 − a 2 − a 2 2 l n ∣ x + x 2 − a 2 ∣ + C \int \sqrt{x^2 - a^2}dx = \frac{x}{2}\sqrt{x^2 - a^2} - \frac{a^2}{2}ln|x+\sqrt{x^2 - a^2}|+C ∫x2−a2dx=2xx2−a2−2a2ln∣x+x2−a2∣+C
∫ a 2 − x 2 d x = x 2 a 2 − x 2 + a 2 2 a r c s i n x a + C \int \sqrt{a^2 - x^2}dx = \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2}arcsin\frac{x}{a}+C ∫a2−x2dx=2xa2−x2+2a2arcsinax+C
其他扩展
消幂
类似于 ∫ x m e λ x d x \int x^m e^{\lambda x}dx ∫xmeλxdx、 ∫ x m l n n x d x \int x^m ln^nxdx ∫xmlnnxdx、 ∫ x m s i n a x / c o s a x d x \int x^m sinax/cosaxdx ∫xmsinax/cosaxdx,可用表格法计算,具体为:
对角相连,正负相间,上导下积,导到0停。
三角代换
a
2
−
x
2
→
x
=
a
s
i
n
t
\sqrt{a^2 - x^2} \to x=asint
a2−x2→x=asint、
a
2
+
x
2
→
x
=
a
t
a
n
t
\sqrt{a^2 + x^2} \to x=atant
a2+x2→x=atant、
x
2
−
a
2
→
x
=
a
s
e
c
t
\sqrt{x^2 - a^2} \to x=asect
x2−a2→x=asect
s
i
n
2
x
=
1
−
c
o
s
2
x
2
sin^2x = \frac{1-cos2x}{2}
sin2x=21−cos2x
c o s 2 x = 1 + c o s 2 x 2 cos^2x = \frac{1+cos2x}{2} cos2x=21+cos2x
s i n 2 x = 2 s i n x c o s x sin2x = 2sinxcosx sin2x=2sinxcosx
c o s 2 x = c o s 2 x − s i n 2 x = 2 c o s 2 x − 1 = 1 − 2 s i n 2 x cos2x = cos^2x - sin^2x = 2cos^2x - 1 = 1 - 2sin^2x cos2x=cos2x−sin2x=2cos2x−1=1−2sin2x
万能替换公式:令
u
=
t
a
n
x
2
u = tan\frac{x}{2}
u=tan2x,
x
=
2
a
r
c
t
a
n
u
x = 2arctanu
x=2arctanu,
d
x
=
2
1
+
u
2
d
u
dx = \frac{2}{1+u^2}du
dx=1+u22du
s
i
n
x
=
2
t
a
n
x
2
1
+
t
a
n
2
x
2
=
2
u
1
+
u
2
sinx = \frac{2tan\frac{x}{2}}{1 + tan^2\frac{x}{2}} = \frac{2u}{1+u^2}
sinx=1+tan22x2tan2x=1+u22u
c o s x = 1 − t a n 2 x 2 1 + t a n 2 x 2 = 1 − u 2 1 + u 2 cosx = \frac{1 - tan^2\frac{x}{2}}{1 + tan^2\frac{x}{2}} = \frac{1-u^2}{1+u^2} cosx=1+tan22x1−tan22x=1+u21−u2
t a n x = s i n x c o s x tanx = \frac{sinx}{cosx} tanx=cosxsinx、 s e c x = 1 c o s x secx = \frac{1}{cosx} secx=cosx1、 c o t x = 1 t a n x cotx = \frac{1}{tanx} cotx=tanx1、 c s c x = 1 s i n x cscx = \frac{1}{sinx} cscx=sinx1
特殊公式
∫ e a x s i n b x / c o s b x d x = 1 a 2 + b 2 ⋅ ∣ ( e a x ) ′ ( s i n b x ) ′ e a x s i n b x ∣ + C = 1 a 2 + b 2 ⋅ ( a e a x s i n b x − b e a x c o s b x ) + C \int e^{ax}sinbx/cosbxdx = \frac{1}{a^2+b^2} \cdot \begin{vmatrix} (e^{ax})^\prime & (sinbx)^\prime\\ e^{ax} & sinbx \end{vmatrix} + C = \frac{1}{a^2+b^2} \cdot (ae^{ax}sinbx - be^{ax}cosbx) + C ∫eaxsinbx/cosbxdx=a2+b21⋅ (eax)′eax(sinbx)′sinbx +C=a2+b21⋅(aeaxsinbx−beaxcosbx)+C
∫ 1 a 2 s i n 2 x + b 2 c o s 2 x d x = ∫ 1 c o s 2 x ( a 2 t a n 2 x + b 2 ) d x = 1 a ∫ 1 ( a t a n x ) 2 + b 2 d a t a n x = 1 a b a r c t a n a t a n x b + C \int \frac{1}{a^2sin^2x + b^2cos^2x}dx = \int \frac{1}{cos^2x(a^2tan^2x + b^2)}dx = \frac{1}{a}\int \frac{1}{(atanx)^2 + b^2}datanx = \frac{1}{ab}arctan\frac{atanx}{b}+ C ∫a2sin2x+b2cos2x1dx=∫cos2x(a2tan2x+b2)1dx=a1∫(atanx)2+b21datanx=ab1arctanbatanx+C
有理函数拆分
1 ( x + 1 ) ( x + 2 ) ( x + 3 ) → A ( x + 1 ) + B ( x + 2 ) + C ( x + 3 ) \frac{1}{(x + 1)(x + 2)(x + 3)} \to \frac{A}{(x + 1)} + \frac{B}{(x + 2)} + \frac{C}{(x + 3)} (x+1)(x+2)(x+3)1→(x+1)A+(x+2)B+(x+3)C
1 ( x + 1 ) 2 ( x − 1 ) → A ( x + 1 ) + B ( x + 1 ) 2 + C ( x − 1 ) \frac{1}{(x + 1)^2(x - 1)} \to \frac{A}{(x + 1)} + \frac{B}{(x + 1)^2} + \frac{C}{(x - 1)} (x+1)2(x−1)1→(x+1)A+(x+1)2B+(x−1)C
1 ( x − 1 ) ( x 2 + 1 ) → A ( x − 1 ) + B x + C ( x 2 + 1 ) \frac{1}{(x - 1)(x^2 + 1)} \to \frac{A}{(x - 1)} + \frac{Bx + C}{(x^2 + 1)} (x−1)(x2+1)1→(x−1)A+(x2+1)Bx+C