题意:给定一个 n 次多项式 F(x),和一个 m 次多项式 G(x),求 F(x) 和 G(x) 的卷积。
分析:FFT 的板子题。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const double PI=acos(-1.0);
struct Complex
{
double r,i;
Complex(double _r=0,double _i=0)
{
r=_r,i=_i;
}
Complex operator + (const Complex &b)
{
return Complex(r+b.r,i+b.i);
}
Complex operator - (const Complex &b)
{
return Complex(r-b.r,i-b.i);
}
Complex operator * (const Complex &b)
{
return Complex(r*b.r-i*b.i,r*b.i+i*b.r);
}
};
const int N = 2*1e6+10;
Complex x1[N*4];
Complex x2[N*4];
int a[N],b[N];
ll num[N*4];
void change(Complex y[],int len)
{
int i,j,k;
for(i=1,j=len/2;i<len-1;i++)
{
if(i<j) swap(y[i],y[j]);
k=len/2;
while(j>=k)
{
j-=k;
k/=2;
}
if(j<k) j+=k;
}
}
void fft(Complex y[],int len,int on)
{
change(y,len);
for(int h=2;h<=len;h<<=1)
{
Complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
for(int j=0;j<len;j+=h)
{
Complex w(1,0);
for(int k=j;k< j+h/2;k++)
{
Complex u=y[k];
Complex t=w*y[k+h/2];
y[k]=u+t;
y[k+h/2]=u-t;
w=w*wn;
}
}
}
if(on==-1)
for(int i=0;i<len;i++)
y[i].r/=len;
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=n;i>=0;i--) scanf("%d",&a[i]);
for(int i=m;i>=0;i--) scanf("%d",&b[i]);
int len=1,len1=n+m+1;
while(len<len1) len<<=1;
for(int i=0;i<=n;i++) x1[i]=Complex(a[i],0);
for(int i=n+1;i<len;i++) x1[i]=Complex(0,0);
for(int i=0;i<=m;i++) x2[i]=Complex(b[i],0);
for(int i=m+1;i<len;i++) x2[i]=Complex(0,0);
fft(x1,len,1);
fft(x2,len,1);
for(int i=0;i<len;i++) x1[i]=x1[i]*x2[i];
fft(x1,len,-1);
for(int i=0;i<len;i++) num[i]=(int)(x1[i].r+0.5);
len=n+m;
while(len>0&&num[len]==0) len--;
printf("%d",num[len]); len--;
while(len>=0)
printf(" %d",num[len]),len--;
return 0;
}