电机振动噪声(NVH)——整数槽分数槽谐波分析补充

目录

前言

正文 

周期FFT

电机中的FFT

结论

最后的话


前言

在之前的博客里,对径向力做了分类。但是没有定量地对力的阶数做讨论。这篇博客就把这个坑给填上。其实数学的推导算不上困难,阶数推导的难点在于整数槽的电机和分数槽的电机它们的谐波次数不一样的,需要分开讨论。这一点也是困扰了我很长时间。上一节的讨论链接如下:

电机NVH笔记-径向电磁力波分类https://blog.csdn.net/weixin_43210097/article/details/120678051?spm=1001.2014.3001.5501https://blog.csdn.net/weixin_43210097/article/details/120678051?spm=1001.2014.3001.5501

对整数槽和分数槽的直观讨论在这:

电机振动噪声(NVH)——整数槽和分数槽谐波分析https://blog.csdn.net/weixin_43210097/article/details/120807164?spm=1001.2014.3001.5501https://blog.csdn.net/weixin_43210097/article/details/120807164?spm=1001.2014.3001.5501

正文 

在之前的博客里,对单相绕组产生的磁动势做了推导,顺带给出了三相合成磁动势的表达式。也给出了各次谐波的表达式。这个推导是没问题的,因为讨论的是整体绕组的谐波,是共性的问题。

现在需要做的,是把这个共性问题细化,分别在整数槽和分数槽中推导,现在看来的确是当初没有建立起磁动势波形空间周期性的概念,一直在这个问题上纠结。

还是把整数槽和分数槽的定义再说明一下:

q=\frac{Q}{2pm}

Q是电机槽数,p极对数,m是相数。计算出来q是分数就称为分数槽电机,是整数就是整数槽电机。

仔细分析这个表达式,其实这个式子已经把极槽配比包含进去了。我之前犯下的一个错误就是,为了简化分析对象,想要单独将定子侧的波形拿出来进行FFT,观察整数槽和分数槽的区别。结果是什么呢,自然是没能得到具有说服力的结论。因为它们的差别,一定是将定子和转子结合起来分析,才能得到的。

周期FFT

这部分工作的代码之前分享过,在这里:

Python_FFThttps://blog.csdn.net/weixin_43210097/article/details/120405174?spm=1001.2014.3001.5501https://blog.csdn.net/weixin_43210097/article/details/120405174?spm=1001.2014.3001.5501

说实话的确比较抽象,绘制以下波形,以它们为载体进行说明。

先上波形,然后对波形进行分析:

用小蓝、小红和小黄对三个结果做区分,各图的第一个波形是标准的矩形波,小蓝和小黄的横坐标长度为8\pi,小红是6\pi.视觉上看上去有些偏移,是因为一个周期的点数较少,所以图形有些像梯形,这个不影响FFT结果。将矩形波持续为1或者-1的时候称为一个单元,比如小蓝,两个单元就是一个周期(2\pi)。小红的周期包含6个单元,小黄4个单元。

交代清楚之后,现在就可以对各个波形进行分析了。小蓝是标准的半波镜像信号。满足以下条件就是半波镜像信号了:

f(t)=-f(t+\frac{T}{2})

这种情况的波形,其傅里叶级数展开式中只含有奇次谐波分量。又称这种信号为奇谐函数。仔细分析,其实小红也是奇谐函数,这里只给出了它一个周期的波形。而小黄是偶谐函数,偶谐函数又叫半波重叠信号:

f(t)=f(t+\frac{T}{2})

偶谐函数只包含偶次谐波分量。

上面三种情况不都是方波吗?为什么FFT分解出的谐波次数不一样呢?因为它们的周期不一样。一模一样的波形为什么周期不一样呢?在分解的时候,周期是我们人为设定的,如果从数学的角度去理解,不同的周期的波形,在进行FFT时计算得到的各次谐波幅值是不一样的,这个结果是计算出来的。仅仅这样回答恐怕是不能说服大家,下面结合电机的实际例子,来进行说明。

以上分析出自《信号与系统》,这样理论和我们的波形结果就对上了。现在,终于可以谈电机的事情了。

电机中的FFT

归根结底,还是极槽配合的问题。先说整数槽绕组,它的q是个整数,也就意味着,整数槽绕组的电机每个极可以占有电机每相绕组整数个槽数,每对极可以构成一个单元电机(或者叫电机最小单元)。如果我们拿定子的磁动势是方波来举例,整数槽绕组就对应了小蓝的情况,定子绕组产生的磁动势一正一负刚好对应转子上的一对极,这样构成了电机分析时的最小单元,所以小蓝的周期是2\pi.整数槽就是这么天造地设的一对,我羡慕了。

实际的整数槽绕组的谐波是不含3及3的倍数的,这一点在之前博客中推理合成磁动势的时候做过说明,小蓝只是为了举例,不要给大家造成不必要的困扰才好。

我也想极槽配合都像整数槽那样,大家都配合得好好的。然而,美好的事物是稀缺的,于是有了分数槽。分数槽是什么意思呢?我举一个简单的例子,有四个人,却只有三块面包。怎么办?就四个人一起分呗,每个人分到0.75块。那万一是四个人分三支笔呢?每个人分0.75支吗?笔不可拆分,共用,四个人共用三支。实际上,这就是分数槽的情况,无可奈何的事情。如果q算出来是0.75,实际上不可能让这个极单独占0.75个槽对吧,槽不可拆分,所以呢,我们让四个极占三个槽,这就是我们的解决方案。

再重复一遍q的定义:

q=\frac{Q}{2pm}=b+\frac{c}{d}

以上只是举例说明分数槽的物理意义,当电机最小单元转子侧这边是偶数个极的时候(d为偶数),这种情况就对应小黄了。也就是说,转子侧对应小黄定子侧产生的4个单元的波形。那么在做FFT的时候,需要将波形跟转子侧对应起来,所以对小黄的矩形波做FFT时,给定的周期是4\pi.

 那剩下的小红呢?小红其实才是最可怜的那个。如果转子侧是奇数个极对应定子侧的相应的槽(d为奇数),那大家想一想,这样构不构成电机最小的单元?不构成。为什么?奇数个极磁路是无法两两闭合的,剩下那个单下来的,让别人怎么办?所以呀,当d算出来是奇数时,我们人为的将两个奇数模块凑在一起,形成2d个极,这样就构造完成了电机的最小模块。可以认为d个极对应了小红的三个单元,所以又给它凑了一半的波形,组成了这个周期。我们对小红进行FFT的时候,给定的是6\pi.

结论

以上三个波形的例子仅仅是为了在说明的时候,让大家有更为直观的理解。真实的电机谐波是比波形展示的要多的。

在弄明白整数槽和分数槽的区别之后,我们可以得到如下结论(出自《交流电机的绕组理论》):

最后的话

极槽配合水很深,但也不是完全弄不明白的。这一部分内容我还在学习,所以博客里记录的观点不可能保证完全正确,欢迎大家跟我讨论。

谐波注入是一种通过注入能量等谐波频率信号来改善电机噪声振动和刺激性的技术。它可以在电机工作过程中同时注入与体系本身谐振频率相匹配的特定频率信号,从而减轻电机系统的噪声振动问题。 谐波注入的实施方法可以通过增加一个或多个与系统谐振频率相匹配的电压信号源来实现。这样,通过与电机的工作频率产生共振的方式,能够有效减小谐振点的能量峰值,从而降低电机系统的振动噪声水平。 谐波注入技术具有以下优点:首先,它能够在不改动电机结构和控制系统的情况下,显著降低电机系统的噪声振动水平,提高整个系统的工作效率。其次,谐波注入技术对电机系统的稳定性没有明显的负面影响。此外,它还可以适用于各种类型的电机系统,包括直流电机、交流电机和步进电机等。 然而,谐波注入技术也存在一些限制。首先,它需要对电机系统进行频率和振幅分析,以确定适合谐波注入的频率范围。其次,谐波注入技术在实际应用中可能会受到系统动态响应和噪声干扰等因素的影响,需要进行进一步的优化和改进。 总之,谐波注入技术是一种有效的改善电机噪声振动和刺激性的方法。它通过在电机系统中注入谐振频率的信号,减轻了谐振点的能量峰值,从而提高了整个电机系统的工作效率和舒适性。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值