电机NVH笔记-径向电磁力波分类

目录

前言

径向电磁力

磁动势

转子磁动势

定子磁动势

气隙磁密的傅里叶表达

径向电磁力的分类

最后的话

参考文献


前言

之前对电机振动噪声的整体情况进行概括整合,接下来的内容尽量对每一个小点进行详细的学习记录,感觉振动噪声这一块内容还是比较有意思,前辈们也已经做了很多工作了。《永磁同步电机电磁振动数值预测与分析》这篇文献中也给出了径向电磁力波的分类,但是没有推导过程。我尽量整合成自己的内容,加入推导步骤,便于大家参考,一起学习交流。另外,如果没有电机学基础知识的同学,就不建议看电机NVH专题系列的博客了,我想尽可能地细化每一个知识点,会有一些推导,这些推导是在电机知识的基础上进行的,没有相关知识储备,看上去也比较闹心。

电机振动噪声入门知识概括:

电机震动噪声(NVH)入门笔记https://blog.csdn.net/weixin_43210097/article/details/120592603?spm=1001.2014.3001.5501https://blog.csdn.net/weixin_43210097/article/details/120592603?spm=1001.2014.3001.5501

径向电磁力

上一篇博客的内容中对电机定子受到的径向电磁力做了简单的介绍,但是也仅仅停留在知道有这么一个力,它的产生由来、分类、作用我们都很含糊不清,没能对它做一个系统地说明。在本篇博客中,会给出它的推导过程,至于这个力的分类,其实是通过它推导结果的表达式进行区分的。

还是先给出逻辑链:

 由于磁动势和电磁力都是用F表示,这里就用大小写进行区分了。在内容介绍时,保证知识点的完备,会首先对磁动势进行说明,而之后的推导过程尽可能的简略,会用磁密B去推导径向力f。

磁动势

转子磁动势

我们知道电机的气隙磁场其实是由定子磁场和转子磁场两部分构成的,这里将磁动势也分为两部分进行表示,首先是转子磁场,永磁同步电机转子侧由永磁体励磁,为了便于后续的推导,将转子磁动势写成傅里叶级数的形式:

F_{r}=\sum F_{rn}\cos (np\theta -n\omega t)

因为转子侧由永磁体励磁,所以它的磁场即随着机械角度\theta改变,也会因为着转子转动随着时间t改变。我们对它做FFT的时候,需要既对时间做分解,又对空间做分解。上式中p为极对数,\omega为电流基频对应的电角速度。FFT结果用正余弦函数进行表示都行,这里用余弦作为三角函数的代表进行推导。

定子磁动势

定子的磁动势会稍微复杂一点,所以放在后面说。这个复杂的缘由来自于三相对称电流。定子三相绕组最为特殊的地方在于三相绕组合成后谐波磁动势的旋转方向会发生变化。这里从最为基本的单相绕组磁动势开始推导,把这个过程的完整地展现出来。

推导建立在最为基础的电机学的知识上,假设电机三相绕组通入的是理想三相对称电流,那对定子侧磁动势的傅里叶分解就体现为对空间的FFT,因为时间是理想正弦的。我们得到的单相绕组的基波磁动势表达式如下:

f_{\varphi 1} (x,t)=F_{\varphi 1}\cos (\omega t)\cos (\frac{\pi }{\tau }x)

其中,x是定子表面位置度量,\tau为极距。\omega是与电机基频电流频率对应的角速度。这样的单相磁动势称为单相脉振磁动势。

接着,用积化和差把单相磁动势分解一下:

f_{\varphi 1} (x,t)=0.5F_{\varphi 1}\cos (\frac{\pi }{\tau }x-\omega t)+0.5F_{\varphi 1}\cos (\frac{\pi }{\tau }x+\omega t)

可以看到分解出的两项有正负号的差别,其中-\omega t表示正转的磁动势,而对应的\omega t表示反转的磁动势。可以发现基波磁动势的旋转速度和电机的同步转速是保持一致的。

另外,单相绕组谐波磁动势表示为如下形式:

f_{\varphi \nu } (x,t)=F_{\varphi \nu }\cos (\omega t)\cos (\nu \frac{\pi }{\tau }x)

单相讨论结束之后,讨论电机中的三相对称绕组产生的合成磁动势,由于三相电流相位分别相差120°电角度,绕组轴线在空间上也相差120°电角度,其基波磁动势可以表示为如下形式:

f_{\varphi A} (x,t)=F_{\varphi 1}\cos (\omega t)\cos (\frac{\pi }{\tau }x)

f_{\varphi B} (x,t)=F_{\varphi 1}\cos (\omega t-\frac{2}{3}\pi )\cos (\frac{\pi }{\tau }x-\frac{2}{3}\pi )

f_{\varphi C} (x,t)=F_{\varphi 1}\cos (\omega t-\frac{4}{3}\pi )\cos (\frac{\pi }{\tau }x-\frac{4}{3}\pi )

把它们相加,中间的运算继续使用积化和差进行化简:

f_{ 1} (x,t)=1.5F_{\varphi 1}\cos (\frac{\pi }{\tau }x-\omega t)

得到的结果很简洁,这是一个以同步转速旋转的磁动势。基波合成的磁动势就出来了。同理,我们重复之前的推导步骤,依次计算3次谐波合成的磁动势,5次谐波合成的磁动势:

f_{3}(x,t)=0

f_{ 5} (x,t)=1.5F_{\varphi 5}\cos (\frac{5\pi }{\tau }x+\omega t)

三及三的倍数次的谐波,空间上差360°的倍数,即三相绕组位置重合,再加上电流相角差120°,相加为0.而对于5次谐波,相加的结果其\omega t项变为正了,意味着其旋转方向发生了变化,变为逆方向旋转,而由于谐波频率的影响,其旋转速度也发生了变化。

对于磁动势的旋转转速,做如下讨论:\upsilon次谐波的磁动势如下:

f_{\varphi \nu } (x,t)=0.5F_{\varphi \nu }\cos (\frac{\nu \pi }{\tau }x-\omega t)+0.5F_{\nu \varphi 1}\cos (\frac{\upsilon \pi }{\tau }x+\omega t)

只需观察磁动势波形上任一点的速度,就能代表整体波形的旋转速度。选取波形峰值点作为代表,设余弦波最大值所在点为x_{0},则它满足:

\cos (\frac{\nu }{\tau }\pi x_{0}-\omega t)=1

故:

\frac{\nu }{\tau }\pi x_{0}-\omega t=0

由此得到x_{0}t的关系,做微分运算获得磁动势波形旋转的线速度:

v_{\nu }=\frac{\tau }{\nu \pi }\omega

故谐波磁动势旋转速度为基波的\frac{1}{\nu }.

至此,定子磁动势的推导结束。推导过程主要是为了详细地解释两点:

  • 定子电流假定为理想正弦电流,故定子磁动势仅考虑空间谐波。
  • 谐波的\omega t项的符号会出现正负变化,对应定子磁动势谐波旋转方向的变化。

综上,定子磁动势的傅里叶展开形式为:

F_{s}=\sum F_{sn}\cos (np\theta -s_{v}\omega t+\phi )

其中,s_{v}取值为正负1,表明谐波磁动势的旋转方向,\phi为磁动势初相。

气隙磁密的傅里叶表达

对电机的磁动势讨论是为下一步计算电机气隙磁密进行铺垫,磁动势已知,我们可以利用磁动势乘气隙磁导获得磁通,再通过磁通求解气隙磁密。解析误差允许的情况下,认为这条计算链是能走通的。在认为气隙磁场已知的情况下,对磁密的傅里叶形式进行讨论。

电机的振动噪声最关心的是径向电磁力,因此本文所有有关磁密的表达式均是径向磁密。在不考虑齿槽效应时,我们得到转子产生的径向磁密和定子产生的径向磁密的表达式如下(分别与磁动势的表达式对应):

Br=\sum Bn\cos (np\theta -n\omega t)

Bs=\sum B\nu \sin(\nu p\theta -s_{v}\omega t)

此处s_{v}作用与讨论磁动势时作用一致,用来刻画定子磁场的旋转方向。接着,我们把齿槽效应加进去。引入比磁导表征由于定子开槽导致的气隙磁导不均匀:

\lambda a=\lambda 0+\sum \lambda _{au}\cos (uQ\theta )

其中,u为齿谐波次数,Q为电机槽数,\theta为机械角度。关于比磁导的详细信息,大家可以参考一下这篇文献:《定子开槽永磁同步电机气隙比磁导解析计算》。

讨论到这,径向气隙磁通密度就可以表达出来了:

b_{rs}=(Bs+Br)\lambda a

径向电磁力的分类

其实气隙磁密求解出来之后,剩下的就是一个数学计算的过程了。在NVH入门知识笔记中,给出了径向力密度的表达式:

Pr=\frac{brs^{2}}{2\mu _{0}}

切向磁密数值太小,将其忽略。将上方推导的傅里叶展开后的磁密表达式带入径向力密度的求解式子中,再结合三角函数的相关计算,最终我们可以得到下面的结果(感兴趣的同学自己推导一下),结果还是比较复杂的,我们对于径向力的分类,就是依据结果表达进行分类的。由于最终表达式过于复杂,在线公式编辑器编写太麻烦了,通过图片的形式将结果给出。

得到这个表达式之后,就可以为径向力波进行分类了。根据各个加和项的组成不同,将它们分为有无考虑定子开槽时永磁体磁场产生的,定子电枢反应磁场产生的,以及两个磁场共同作用的。径向电磁力波的分类结果由下表中给出。

至此,电磁力波的分类结果就很清晰了。再对结果做一个说明,空间阶数指的是表达式中角度前面的系数,用以刻画电磁力波的空间分布性质,表征沿定子圆周方向,电磁力波有几个波峰,也是方便和后续的电机模态阶数对应。频率特征不用解释了吧,表征电磁力波随时间变化的情况,电磁力的频率也会影响到后续电机振动的结果。

以上图表均出自参考文献[1]。

最后的话

电机的振动噪声其实是按照力、振动、声辐射的顺序进行分析的,它的特点就是分析的步骤长,包含多个领域的知识,而且由于计算链长,导致误差会比较大。想要解析计算非常精确比较困难。研究者们偏向于使用多物理场耦合的方式,对电机的振动噪声进行分析,那样更加精确。

之后电机NVH系列的博客呢,肯定还是会包含很多理论推导的,目的不在于给出多么可靠的表达式,而是想通过这样一个过程,试着从数学的角度理解被称作‘玄学’的振动噪音。如果能对大家学习这方面的知识提供一点参考帮助,那是最好不过的了。

参考文献

[1]左曙光,刘晓璇,于明湖,吴旭东,张国辉.永磁同步电机电磁振动数值预测与分析[J].电工技术学报,2017,32(01):159-167.

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值