论文github:Website Fingerprinting through Deep Learning (distrinet-research.be)
摘要
通过Tor访问网站所产生的流量,通过某些特征(数据包时间、大小、方向)可以确定网站的信息,这就是网站指纹攻击。但这种攻击取决于手动构建指纹的特征集,本文实现了自动化特征工程,通过深度学习实现网站指纹攻击。
1. 介绍
Tor是一种匿名通信工具,用于保护用户的隐私。Tor会对通信的内容和路由信息进行加密,单个节点只知道和它对接的节点,而不知道通信的起源和目的地。但是研究显示,Tor有严重的侧信道漏洞,可以通过加密网络数据包的方向和大小泄露。这种测信道信息对于特定网站来说是唯一的,因此可以形成网站指纹,用于分类。
在相关工作中,攻击被视为一个分类问题。解决这一问题的方法是,手动设计流量特征,然后使用机器学习算法对这些特征进行分类。找到独特的特征是准确识别网站的关键,手动构建特征代价昂贵。目前为止还没有自动化流程。
实施新的WF攻击时,工作集中在特征工程上,以组合和选择最显著的特征用于网站识别。因此,这些攻击是由一组固定特征定义的,这些攻击对特征的变化很敏感。防御时,在Tor网络中部署隐藏这些特征就可以。这导致了攻击和防御之间的军备竞赛:新的攻击打败了防御,因为它们利用了以前没有考虑到的特征,相反,新的防御被设计成隐藏那些攻击利用的特征。
本文提出了一种基于深度学习的WF攻击方法,结合了自动特征学习,因此它不是由特定的特征集定义的。基于深度学习的攻击被设计为能够适应防御引入的特征中的任何扰动。
文章贡献: