论文题目:Subverting Website Fingerprinting Defenses with Robust Traffic Representation
中文题目:利用稳健的流量表示颠覆网站指纹防御
发表会议:USENIX 2023
摘要
匿名网络(如 Tor)容易受到各种网站指纹(WF)攻击。本文提出了一种名为鲁棒指纹(Robust Fingerprinting,RF)的新型 WF 攻击,它可以在各种防御措施下实施WF攻击。具体来说,我们开发了一种稳健的流量表示方法,该方法可生成流量聚合矩阵(Traffic Aggregation Matrix,TAM),以充分捕捉从 Tor 跟踪中泄露的关键信息特征。
利用 TAM,攻击者可以训练一个基于 CNN 的分类器,该分类器可以学习不同防御所揭示的常见高级流量特征。我们利用公开的真实数据集进行了广泛的实验,将 RF 与最先进的(SOTA)WF 攻击进行了比较。封闭和开放世界的评估结果表明,RF 明显优于 SOTA 攻击。特别是,在 SOTA 防御下,RF 可以有效地对 Tor 流量进行指纹识别,与现有的最佳攻击(即 Tik-Tok)相比,平均准确率提高了 8.9%。
1. 介绍
Tor容易受到WF攻击,WF攻击利用侧信道信息来破坏Tor的匿名性。为了缓解 WF 攻击,人们开发了多种防御手段,如 WTF-PAD、Front、Walkie-Talkie、TrafficSliver、RegulaTor 和 Blanket。这些防御系统采用的策略包括推迟数据包发送、添加虚假数据包、在多路径上分割流量或将它们结合起来。
WF攻击利用流量侧信道数据和深度学习来破坏防御。这些攻击假设攻击者知道防御的细节,但即便如此,WF攻击也无法在不同防御下取得好的效果。例如DF和Var-CNN对WTF-PAD的准确率超过90%,但对Front的准确率只有不到75%,他们无法攻击流量分割防御,在TrafficSliver上准确率低于60%。此外,当网络条件(例如带宽)发生变化时,SOTA攻击,特别是那些使用包定时信息的攻击可能无效。在不同的网络带宽下,Tik-Tok和Var-CNN的准确率都有显著下降。
贡献
提出了一种鲁棒的WF攻击,鲁棒指纹(RF),它可以在各种防御的情况下达到很高的攻击精度。
RF的基本思想:鲁棒的流量表示可以改进针对不同防御的深度学习WF模型。它由两个关键部分组成:流量聚合矩阵(TAM)的信息性流量表示和基于深度学习的分类器。TAM表示数据包的方向和时间,并提取出受防御影响较小的判别特征。然后,深度学习分类器可以从TAM中自动学习有效指纹。
2. 背景
主要分为WF攻击的介绍、WF防御的介绍,请各位读者自行阅读。
3. 威胁模型和攻击目标
WF攻击威胁模型如图1所示。假设一个本地被动攻击者。被动攻击者只能对报文进行嗅探和记录,不能对报文进行修改、延迟、丢弃和解密。本地攻击者只能从Tor网络中客户端和保护节点的连接中收集报文轨迹。
WF攻击通常被认为是一个分类问题。在离线训练过程中,攻击者从网站痕迹的集合中提取特征并训练监督分类器。发动WF攻击时,攻击者捕获目标客户端连接Tor网络的流量踪迹,提取特征,并用分类器预测客户端访问的网站。
客户端可以灵活地部署WF防御(例如,WTF-PAD, Front, walkkie - talkie和Blanket)来保护他们的连接隐私。WF攻击的目标是即使在各种WF防御下也能准确地识别Tor流量。在本文中,我们假设攻击者事先知道受害者部署的具体防御措施。在此设置下,攻击者可以获取目标防御产生的流量轨迹进行对抗性训练。尽管这种设置对攻击者具有后发优势