论文阅读:Deep Fingerprinting: Undermining Website Fingerprinting Defenses with Deep Learning

 论文github:https://github.com/deep-fingerprinting/df

论文数据:https://drive.google.com/drive/folders/1kxjqlaWWJbMW56E3kbXlttqcKJFkeCy6?usp=sharing

摘要

网站指纹识别可以让攻击者确定用户通过加密方式访问过哪些网站,并且网站指纹攻击是有效的。作者提出了深度指纹(Deep Fingerprinting),是一种针对Tor的网站指纹攻击,利用CNN设计了复杂架构。DF在没有防御的Tor流量达到了98%以上的准确率,对有防御的流量准确率仍然超过90%。

1. 介绍

Tor已经成为匿名浏览互联网的工具,然而Tor很容易受到流量分析的攻击。WF允许攻击者通过分析网络流量中的模式来识别加密连接中的网页。

WF的原理:网站内容的差异(例如,不同的图像、脚本、样式)可以从网络流量中推断出来,即使流量已被加密。从机器学习的角度来看,WF是一个分类问题:在一组网站上训练一个分类器,提取每个网站独有的网络流量特征。

针对这些攻击,提出了一些防御措施。WF防御在流量中添加虚拟报

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值