acwing-854.Floyd求最短路

题目描述
给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。
再给定k个询问,每个询问包含两个整数x和y,表示查询从点x到点y的最短距离,如果路径不存在,则输出“impossible”。
数据保证图中不存在负权回路。
输入格式
第一行包含三个整数n,m,k
接下来m行,每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。
接下来k行,每行包含两个整数x,y,表示询问点x到点y的最短距离。
输出格式
共k行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出“impossible”。
数据范围
1≤n≤200 ,
1≤k≤n2
1≤m≤20000,
图中涉及边长绝对值均不超过10000。
输入样例
3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3
输出样例
impossible
1
解题代码如下

#include<bits/stdc++.h>
using namespace std;
const int N=205,INF=1e9;
int n,m,k;
int d[N][N];
void floyd(){						///floyd算法处理最短路径
    for(int k=1;k<=n;k++){
        for(int i=1;i<=n;i++){
            for(int j=1;j<=n;j++){
                d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
            }
        }
    }
}
int main(){
    scanf("%d%d%d",&n,&m,&k);
    for(int i=1;i<=n;i++){			///邻接矩阵初始化
        for(int j=1;j<=n;j++){
            if(i==j) d[i][j]=0;		///自己到自己的边初始化为0
            else d[i][j]=INF;		///其余的初始化为无穷大
        }
    }
    while(m--){						///读入边,初始化距离
        int a,b,w;
        scanf("%d%d%d",&a,&b,&w);
        d[a][b]=min(d[a][b],w);		///去掉重边,多条边则保留最小的边,去掉自环
    }
    floyd();			
    while(k--){
        int a,b;
        scanf("%d%d",&a,&b);
        if(d[a][b]>INF/2) puts("impossible");
        else printf("%d\n",d[a][b]);
    }
    return 0;
}

算法解题思想:因为题目最后给出的是多组数据(多组起点和终点),故用floyd算法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值