题目描述
给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。
再给定k个询问,每个询问包含两个整数x和y,表示查询从点x到点y的最短距离,如果路径不存在,则输出“impossible”。
数据保证图中不存在负权回路。
输入格式
第一行包含三个整数n,m,k
接下来m行,每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。
接下来k行,每行包含两个整数x,y,表示询问点x到点y的最短距离。
输出格式
共k行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出“impossible”。
数据范围
1≤n≤200 ,
1≤k≤n2
1≤m≤20000,
图中涉及边长绝对值均不超过10000。
输入样例
3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3
输出样例
impossible
1
解题代码如下
#include<bits/stdc++.h>
using namespace std;
const int N=205,INF=1e9;
int n,m,k;
int d[N][N];
void floyd(){ ///floyd算法处理最短路径
for(int k=1;k<=n;k++){
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
}
}
}
}
int main(){
scanf("%d%d%d",&n,&m,&k);
for(int i=1;i<=n;i++){ ///邻接矩阵初始化
for(int j=1;j<=n;j++){
if(i==j) d[i][j]=0; ///自己到自己的边初始化为0
else d[i][j]=INF; ///其余的初始化为无穷大
}
}
while(m--){ ///读入边,初始化距离
int a,b,w;
scanf("%d%d%d",&a,&b,&w);
d[a][b]=min(d[a][b],w); ///去掉重边,多条边则保留最小的边,去掉自环
}
floyd();
while(k--){
int a,b;
scanf("%d%d",&a,&b);
if(d[a][b]>INF/2) puts("impossible");
else printf("%d\n",d[a][b]);
}
return 0;
}
算法解题思想:因为题目最后给出的是多组数据(多组起点和终点),故用floyd算法。