b=a[np.newaxis,:]的功能解释

下面以例子来说明
import numpy as np
a=np.array([1,2,3,4,5])
b=a[np.newaxis,:]
print (a.shape,b.shape)
print (a)
print (b)
c=a[:np.newaxis]
print(c.shape)
print©
结果如下:
(5,) (1, 5)
[1 2 3 4 5]
[[1 2 3 4 5]]
(5,)
[1 2 3 4 5]
大概应该就明白了,np.newaxis,就是增加一个维度,比如说将(5,) 变成(1, 5),只需要在行维度上写上np.newaxis即可,应该能够理解了吧,我是这么理解的哈哈。

import cv2 import numpy as np from skimage import img_as_float from scipy.sparse import diags from skimage.restoration import rolling_ball def compute_t_lower(I, L_gamma, c=0.5): """计算 t_lambda_i 的下界""" return np.clip(c * I / (L_gamma + 1e-6), 0, 1) def guided_filter(I, p, r=10, eps=1e-3): """引导滤波优化 t_lambda """ mean_I = cv2.boxFilter(I, -1, (r, r)) mean_p = cv2.boxFilter(p, -1, (r, r)) mean_Ip = cv2.boxFilter(I * p, -1, (r, r)) cov_Ip = mean_Ip - mean_I * mean_p mean_II = cv2.boxFilter(I * I, -1, (r, r)) var_I = mean_II - mean_I * mean_I a = cov_Ip / (var_I + eps) b = mean_p - a * mean_I mean_a = cv2.boxFilter(a, -1, (r, r)) mean_b = cv2.boxFilter(b, -1, (r, r)) q = mean_a * I + mean_b return np.clip(q, 0, 1) def amplify_t(t_lower): """计算放大因子""" amplify_factor = np.mean(t_lower) * 3 # 计算 1/3 ∑ t_lambda / t_lambda_lower return np.clip(t_lower * amplify_factor, 0, 1) def color_correction(I, R, t, L_gamma): """应用颜色校正公式""" f = (L_gamma * R * t + L_gamma * (1 - t)) / (t + 1e-6) return np.clip(I * f, 0, 1) # 读取输入图像 image = cv2.imread('input.jpg') # 读取图像 image = img_as_float(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) # 初始化参数 L_gamma = np.ones_like(image) * 0.9 # 设定 L_gamma,假设为 0.9 R = np.ones_like(image) * 0.8 # 设定反射率 R_lambda,假设为 0.8 # 计算 t_lambda_i 下界 t_lower = compute_t_lower(image, L_gamma) # 进行 Guided Filter 平滑优化 t_opt = guided_filter(image[:, :, 0], t_lower[:, :, 0]) # 放大 t_lambda t_final = amplify_t(t_opt) # 颜色校正 corrected_image = color_correction(image, R, t_final[:, :, np.newaxis], L_gamma) # 保存输出图像 cv2.imwrite('corrected_image.jpg', (corrected_image * 255).astype(np.uint8))
最新发布
04-03
2025-03-11 10:44:54.222546: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_blas.cc:654] failed to run cuBLAS routine cublasSgemm_v2: CUBLAS_STATUS_EXECUTION_FAILED Traceback (most recent call last): File "C:\Users\19124\anaconda3\envs\rl(tf1.x)\lib\site-packages\tensorflow\python\client\session.py", line 1322, in _do_call return fn(*args) File "C:\Users\19124\anaconda3\envs\rl(tf1.x)\lib\site-packages\tensorflow\python\client\session.py", line 1307, in _run_fn options, feed_dict, fetch_list, target_list, run_metadata) File "C:\Users\19124\anaconda3\envs\rl(tf1.x)\lib\site-packages\tensorflow\python\client\session.py", line 1409, in _call_tf_sessionrun run_metadata) tensorflow.python.framework.errors_impl.InternalError: Blas GEMM launch failed : a.shape=(128, 7), b.shape=(7, 128), m=128, n=128, k=7 [[Node: Critic/dense/MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/device:GPU:0"](_arg_state_0_0/_5, Critic/dense/kernel/read)]] [[Node: Critic/dense_1/BiasAdd/_7 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_21_Critic/dense_1/BiasAdd", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]] During handling of the above exception, another exception occurred: Traceback (most recent call last): File "D:\threeMotorsProject\threeMotorsProject\RL\PPO\ppo.py", line 157, in <module> train() File "D:\threeMotorsProject\threeMotorsProject\RL\PPO\ppo.py", line 122, in train ppo.update(np.vstack(buffer_s), np.vstack(buffer_a), np.array(discounted_r)[:, np.newaxis]) File "D:\threeMotorsProject\threeMotorsProject\RL\PPO\ppo.py", line 80, in update adv = self.sess.run(self.v, {self.S: s}) - r File "C:\Users\19124\anaconda3\envs\rl(tf1.x)\lib\site-packages\tensorflow\python\client\session.py",
03-12
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值