Hue中添加Notebook

  1. 使用管理员登录CM控制台,进入Hue服务界面
    配置 > 搜索“hue_safety_valve.ini”
    在hue_safety_valve.ini中添加如下配置启用Notebook功能

    [desktop]
      app_blacklist=
    
    [spark]
      livy_server_host=node00
      livy_server_port=8998
      livy_server_session_kind=yarn
    
    [notebook]
      show_notebooks=true
      enable_external_statements=true
      enable_batch_execute=true
    

    在这里插入图片描述
    保存更改并重启Hue服务。

  2. 登录Hue
    在这里插入图片描述
    在这里插入图片描述
    Notebook支持的类型
    在这里插入图片描述

  3. 安装部署Livy
    Cloudera Manager中安装部署Livy服务

  4. 创建一个PySpark交互式会话并运行示例代码验证

    from __future__ import print_function
    import sys
    from random import random
    from operator import add
    from pyspark import SparkConf,SparkContext
    
    partitions = int(sys.argv[1]) if len(sys.argv) > 1 else 2
    n = 100000 * partitions
    
    def f(_):
        x = random() * 2 - 1
        y = random() * 2 - 1
        return 1 if x ** 2 + y ** 2 < 1 else 0
    count = sc.parallelize(range(1, n + 1), partitions).map(f).reduce(add)
    print("Pi is roughly %f" % (4.0 * count / n))
    

    在这里插入图片描述

### 如何在 Jupyter Notebook 中进行数据可视化并将多个图表整合到一个界面 #### 使用 Matplotlib 和 Seaborn 库绘制单个图表 为了在 Jupyter Notebook 中创建高质量的图形,可以利用 Python 的强大绘图库 Matplotlib 和 Seaborn。这两个库提供了丰富的功能来定制化图表样式。 ```python import matplotlib.pyplot as plt import seaborn as sns sns.set_theme(style="darkgrid") # 加载示例数据集 tips = sns.load_dataset("tips") # 绘制散点图 plt.figure(figsize=(8, 6)) sns.scatterplot(x='total_bill', y='tip', data=tips) plt.title('Total Bill vs Tip') plt.show() ``` 此代码片段展示了如何加载内置的数据集 `tips` 并使用 Seaborn 创建一个简单的散点图[^1]。 #### 整合多个子图在一个界面上显示 当需要在同一窗口内展示多张不同类型的图表时,可以通过调用 `plt.subplots()` 方法轻松实现这一目标。这允许开发者定义网格布局,并向其中添加各个独立的小型图表。 ```python fig, axes = plt.subplots(2, 2, figsize=(10, 8)) # 子图一:总账单与小费的关系 (散点图) sns.scatterplot(ax=axes[0][0], x='total_bill', y='tip', data=tips) axes[0][0].set_title('Scatter Plot') # 子图二:按性别分组的日均消费分布情况 (箱线图) sns.boxplot(ax=axes[0][1], x='day', y='total_bill', hue='sex', data=tips) axes[0][1].set_title('Box Plot by Day and Sex') # 子图三:星期几的服务评价数量统计 (条形图) sns.countplot(ax=axes[1][0], x='day', hue='time', data=tips) axes[1][0].set_title('Count Plot of Days with Time') # 子图四:吸烟者与否对于小费的影响 (提琴图) sns.violinplot(ax=axes[1][1], x='smoker', y='tip', data=tips) axes[1][1].set_title('Violin Plot on Smokers Tips') plt.tight_layout() # 自动调整各子图间距防止重叠 plt.show() ``` 上述脚本构建了一个由四个部分组成的复合图像,每个部分都代表不同类型的数据视图,从而更全面地理解给定数据集中变量间关系[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值