【AI论文精读5】知识图谱与LLM结合的路线图-P4(完)

【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】


P1P2P3

6 协同LLMs与知识图谱(KGs)

近年来,LLMs与知识图谱(KGs)的协同工作引起了越来越多的关注,这种协同结合了LLMs与知识图谱的优势,在各种下游应用中相互提升表现。例如,LLMs可用于理解自然语言,而知识图谱则作为知识库,提供事实知识。LLMs与知识图谱的统一可以产生一个强大的模型,用于知识表示和推理。

在本节中,我们将从两个角度讨论最先进的协同LLMs与知识图谱的研究:1)协同知识表示,2)协同推理。代表性的工作总结在表4中

表4

协同LLMs与知识图谱的研究总结

6.1 协同知识表示

文本语料库和知识图谱(KGs)都包含大量知识。然而,文本语料库中的知识通常是隐式和非结构化的,而知识图谱中的知识是显式和结构化的。协同知识表示(Synergized Knowledge Representation)旨在设计一个协同模型,能够有效地表示来自LLMs和知识图谱的知识。该协同模型能够更好地理解来自这两种资源的知识,使其在许多下游任务中具有重要价值。

为了联合表示这些知识,研究人员提出了通过引入额外的知识图谱融合模块来进行协同模型设计,并与LLMs进行联合训练。

  • 如图23所示,ERNIE [35] 提出了一种文本-知识双编码器架构,其中T编码器首先编码输入句子,随后K编码器处理知识图谱,并将其与T编码器生成的文本表示融合。
  • BERT-MK [241] 采用了类似的双编码器架构,但在LLMs的预训练过程中引入了邻近实体的额外信息。然而,知识图谱中的一些邻近实体可能与输入文本无关,从而产生额外的冗余和噪音。
  • CokeBERT [242] 针对这个问题,提出了基于图神经网络(GNN)的模块,利用输入文本过滤掉无关的知识图谱实体。
  • JAKET [243] 提出了在大型语言模型的中间阶段融合实体信息的方法。
  • KEPLER [40] 提出了一个用于知识嵌入和预训练语言表示的统一模型。在KEPLER中,他们使用LLM对文本实体描述进行编码,并将其作为嵌入,然后联合优化知识嵌入和语言建模目标。
  • JointGT [42] 提出了一个图-文本联合表示学习模型,设计了三个预训练任务,以对齐图和文本的表示。
  • DRAGON [44] 提出了一个自监督方法,用于从文本和知识图谱中预训练联合语言-知识基础模型。该方法以文本段落和相关的知识图谱子图为输入,双向融合这两种模态的信息。随后,DRAGON利用了两个自监督推理任务,即掩码语言模型和知识图谱链接预测,以优化模型参数。
  • HKLM [238] 引入了一个统一的LLM,结合知识图谱来学习特定领域知识的表示。

图23

通过额外的知识图谱(KG)融合模块实现的协同知识表示。


6.2 协同推理

为了更好地利用文本语料库和知识图谱的推理能力,协同推理旨在设计一个能够有效结合LLMs和KGs进行推理的模型。

LLM-KG融合推理。

LLM-KG融合推理通过两个分别独立的LLM和KG编码器处理文本和相关的KG输入 [244] 。这两个编码器同等重要,联合融合来自两个来源的知识进行推理。

  • 为了增强文本和知识之间的交互,KagNet [38] 首先对输入的KG进行编码,然
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值